
 1

Draft Working Paper for Pre-Dissemination Peer Review Only

Working Paper 5.1
April 24, 2008

 AGEPRO Version 2.02 User=s Guide

 Jon K. T. Brodziak and Paul J. Rago
 National Marine Fisheries Service

 Northeast Fisheries Science Center
Population Dynamics Branch

166 Water Street
Woods Hole, Massachusetts 02543-1097

Email: Jon.Brodziak@NOAA.GOV

Version 2.02
23 July 2002

This information is distributed solely for the purposes of pre-dissemination peer review. It
has not been formally disseminated by NOAA. It does not represent any final agency

determination or policy.

 2

Abstract

This USER=s GUIDE describes the AGEPRO model and version 2.02 software
application for UNIX. At present there is no USER=s GUIDE for the recently-developed
PC version 2.02. However, both executables are compiled using the same FORTRAN 90
source code (see Appendix 2). Comparison tests show that the UNIX and PC versions 2.02
produce nearly identical outputs.

The AGEPRO model performs stochastic projections for an exploited age-
structured fish population over a USER-specified time horizon. The model is designed to
provide quantitative answers to AWhat if@ questions about the effects of a harvest strategy
on the age-structured population. The USER=s GUIDE describes the numerical algorithms
and theoretical basis of the model. Program inputs, outputs, structure and use are also
described. Several examples of projection runs are used to illustrate general features of the
model and complete Fortran 90 source code is provided.

 3

Table of Contents

Introduction ………………………………………………………………………………4
Age-structured Population Model..5

Population Abundance, Survival, and Spawning Biomass ..5
Catch, Landings, and Discards...7
Population Harvest ...7
Stock-Recruitment Relationship ..9

Model 1. Markov Matrix ..9
Model 2. Empirical Recruits Per Spawning Biomass Distribution11
Model 3. Empirical Recruitment Distribution ...12
Model 4. Two-Stage Empirical Recruits Per Spawning Biomass

Distribution ..13
Model 5. Beverton-Holt Curve With Lognormal Error13
Model 6. Ricker Curve With Lognormal Error..14
Model 7. Shepherd Curve With Lognormal Error14
Model 8. Lognormal Distribution ..15
Model 9. Time-Varying Empirical Recruitment Distribution15
Model 11. Ricker Curve With Autocorrelated Lognormal Error16
Model 12. Shepherd Curve With Autocorrelated Lognormal Error17
Model 13. Autocorrelated Lognormal Distribution17
Constrained Recruits Per Spawning Biomass For Lognormal Error Models

..19
Initial Population Abundance...19
Stochastic Natural Mortality ..21
Spawning Stock Biomass Threshold..21
Target Fishing Mortality ..22
Prediction of Catch-At-Age Index ...22
Landings by Market Category..23

Age-Structured Projection Software ..24
Input Data...24
Model Outputs..30
Program Structure ..32
Examples ..33

Example 1...33
Example 2...40
Example 3...52

References ..59
Table 1..60
Table 2..61
Appendix 1 ...51
Appendix 2 ...53

 4

Introduction

The AGEPRO program performs stochastic projections of the abundance of an
exploited age-structured population over a time horizon of up to 25 years. The primary
purpose of the AGEPRO model is to characterize the sampling distribution of key fishery
system outputs such as landings, spawning stock biomass, and recruitment under
uncertainty. The acronym AAGEPRO@ indicates that the program performs age-structured
projections in contrast to size- or biomass-based projection models. In this program, the
USER chooses the level of harvest that will be taken from the population by setting quotas
or fishing mortality rates in each year of the time horizon.

There are three elements of uncertainty that can be incorporated in the AGEPRO
model: recruitment, initial population size, and natural mortality. Recruitment is the
primary stochastic element in the population model in AGEPRO, where recruitment is
either the number of age-1 or age-2 fish in the population at the beginning of each year in
the time horizon. There are a total of fifteen stochastic recruitment submodels that can be
used for population projection. It should be noted that it is possible to simulate the case of
deterministic recruitment with AGEPRO through a suitable choice of recruitment
submodel and input data. Initial population size is a second potential source of uncertainty
in AGEPRO that can be incorporated into population projection. To use this feature, the
USER must have an initial distribution of population sizes that can be projected through
the time horizon. Alternatively, the USER can choose to base the projections on a single
estimate of initial population size. A third potential source of uncertainty in the AGEPRO
model is natural mortality. In particular, the instantaneous natural mortality rate is assumed
to be equal for all age classes in the population. The USER can choose to have a constant
or a stochastic natural mortality rate. In the stochastic case, the natural mortality rates are
taken to be realizations from a uniform distribution specified by the USER.

The AGEPRO model was conceived as part of a study to determine optimal
strategies to rebuild a depleted fish stock. The AGEPRO model was initially developed in
winter 1994 to compare the effects of various harvesting scenarios on a depleted stock.
Subsequently, a manuscript describing the model was presented at the May 1994 meeting
of the NEFSC Methods Working Group (Brodziak and Rago, manuscript1994; Brodziak et
al. 1998). This software was then applied to assessment results for several stocks at the
18th SARC (NEFSC 1994) to evaluate the potential consequences of harvest policies. The
model was extended in autumn 1994 to assist the Groundfish Plan Development Team and
was also revised during summer 1995 to assist in the evaluation of Amendment 7 to the
Northeast Multispecies Fishery Management Plan. Throughout these developments, the
AGEPRO software was considered to be research software that had no documentation,
except for comments in the source code. As a result, this USER=S GUIDE was written to
provide documentation for the AGEPRO model and software. It was revised in July 1999
and again in February 2002 to describe modifications to the model and software. The most
recent software is written in Fortran 90 (agepro_v2.f90).

 5

Age-structured Population Model

An age-structured population model is the basis for the AGEPRO model and
software. The age-structured model represents an iteroparous fish population whose
abundance changes due to recruitment, natural mortality, and fishing mortality. Population
size at age changes continuously throughout the year due to natural and fishing mortality
which occur concurrently. That is, the fishery is AType 2" Ricker (1975). Recruitment to
the population is measured at the beginning of each year. Notation for the population
model is summarized in Table 1.

Population Abundance, Survival, and Spawning Biomass

The AGEPRO model accounts for the number of fish alive within each ageclass of
the population. The youngest ageclass comprises the recruits where the age of recruitment
is either age-1 or age-2. The oldest ageclass comprises all fish that are alive and at least as
old as a USER-specified cutoff age called the plus-group age. In this implementation the
maximum number of ageclasses is 25. Let AR@ denote the recruitment age and AA@ denote
the plus-group age. For each ageclass, the number of fish alive at the beginning of a given
calender year (January 1st) is denoted as Nj(t) where Aj@ is the ageclass and At@ is the year.
In particular, note that NA(t) is the number of fish that are age-A or older at the beginning
of year t. When the recruitment age is age, the population abundance at the beginning of
year t can be succinctly represented as the vector N(t), where

When the age of recruitment is age-2, the age classes are 2 through the plus-group and the
age-1 element is not present.

Population survival at age from year t-1 to year t is calculated in a standard manner
using instantaneous fishing and mortality rates. To describe annual survival through

N(t) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤N1

(,t,)
N2
(,t,)

.

.

.

.

.

.
NA
(,t,)

 6

mortality, let M(t) denote the instantaneous natural mortality rate and let Fj(t) denote the
instantaneous fishing mortality rate for age-j fish in year t. Then population size at age in

year t is given by
Note that survival for the plus-group involves an age-A and an age-(A-1) component. Also
note that recruitment is determined through a stochastic process that is either dependent or
independent of spawning biomass in year t-R (see Stock-Recruitment Relationship
below).

Annual spawning biomass of the population is calculated from the population size
vector N(t) and mortality rates as well as additional information concerning fish maturity
and size at age. To describe annual mortality, let M(t) denote the instantaneous natural
mortality rate and let Fj(t) denote the instantaneous fishing mortality rate for age-j fish in
year t. Let FMj denote the average fraction of age-j fish that are mature and let WS, j denote
the average spawning weight of an age-j fish. Further, let ZPROJ(t) denote the average
fraction of total annual mortality that occurs from January 1st to the mid-point of the
spawning season for the fish stock. Given these data, the vector of population size at the

midpoint of the spawning season in year t, denoted by NS(t), is

This vector is the result of applying instantaneous natural and fishing mortality rates that

Na(t) = Na-1(t-1) Ce-M(t-1)-Fa-1(t-1) for a=R+1 A-1

 NA(t) = NA(t-1) Ce-M(t-1)-FA(t-1) + NA-1(t-1) Ce-M(t-1)-FA-1(t-1)

NS(t) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤N1

(,t,)
e-ZPROJ(t)[M(t)+F1(t)]

N2
(,t,)

e-ZPROJ(t)[M(t)+F2(t)]
.
.
.
.
.
.

NA
(,t,)

e-ZPROJ(t)[M(t)+FA(t)]

 7

occur prior to the spawning season to the population vector at the beginning of the year,
N(t). When recruitment occurs at age-2, the age-1 element in NS(t) is not present. The total
spawning biomass in year t, denoted as SSB(t), is the sum over all ageclasses of the weight
of mature fish at the midpoint of the spawning season,

Catch, Landings, and Discards

In the AGEPRO model, the fraction of the population that is subject to harvest by
the fishery depends on the fishery selectivity, also known as the partial recruitment pattern.
The catch by ageclass in the fishery is given by the standard catch equation (Ricker 1975),

and the catch of age-a fish in year t, denoted by Ca(t), is
To account for age-specific discarding of fish, let DFa(t) be the fraction of age-a

fish that are discarded and die in year t, and let WL ,a and WD , a be the average weight at
age-a for landed and discarded fish, respectively. The total landed weight in year t, denoted

by L(t), is

Similarly, the total weight discarded in year t, denoted by D(t), is

Population Harvest

The AGEPRO model has two options for determining the level of population
harvest in each year of the time horizon. The first option is a USER-specified fishing
mortality rate (F-based management) and the second is a USER-specified landings quota
(quota-based management). These harvest options can be mixed in a given projection run

SSB(t) =
A
j

a=1
WS,a FMa Na(t) e-ZPROJ(t)[M(t)+Fa(t)]

Ca(t) =
Fa(t)

M(t)+Fa(t) { }1-e-[M(t)+Fa(t)] Na(t)

L(t) =
A
j

a=1
Ca(t)[]1-DFa(t) WL,a

D(t) =
A
j

a=1
Ca(t) DFa(t) WD,a

 8

where F-based management is applied in some years and quota-based management in the
other years. The mix of quotas and F-based harvest can be useful when projecting forward
from an old assessment where the catch is known in the intervening years.

When F-based management is applied, population harvest is determined by setting
Fa(t) in equation (4). In this case, the age-specific fishing mortality rate for age-a fish is the
product of the fully-recruited fishing mortality rate, denoted by F(t), and the partial

recruitment to F(t) for age-a fish (age-specific selectivity), denoted by PRa(t). That is,

In equation (7), the USER specifies both F(t) and PRa(t). Based on Fa(t), the landings and
discards (if applicable), are determined by equations (5) and (6). When quota-based
management is applied, however, the F(t) that would yield the landed quota must be
determined numerically.

In the case of quota-based management, the target quota of landings in year t,
denoted by Q(t), will translate into a variety of effective fishing mortality rates depending
on population size, partial recruitment pattern, and discard pattern (if applicable). Ignoring
the time component for a moment, the quota Q can be expressed as a function of F. That is
Q= L(F), where F is the fully-recruited F and L is the level of landings as a function of F.
To see this result, observe that equations (5) and (8) can be combined to give the catch of

age-a fish as a function of F

Similarly, since the average weight of the landed fish and the fraction discarded do not

depend on F, landings can be expressed as a function of F
The fully-recruited fishing mortality, F, which satisfies the equation Q=L(F) can be

found numerically using Newton's method. Details on this approach are found in
Appendix 1 Quotas which exceed the fishable biomass of the population are infeasible;
conditions for defining infeasible quotas are also given in Appendix 1.

Fa(t) = F(t) PRa

Ca(F) =
PRa F

M(t)+PRa F { }1-e- [M(t)+PRa F] Na(t)

L(F) =
A
j

a=1
Ca(F)[]1-DFa WL,a

 9

Stock-Recruitment Relationship

In general, stock and recruitment data are highly variable owing to intrinsic
variability in factors governing survival and measurement error in the estimates of
recruitment (NR(t)) and spawning stock biomass that generated it (SSB(t-R)). It is usually
desirable to characterize the uncertainty in recruitment predictions, but standard statistical
approaches fail to provide the type of information desirable for such characterization. In
the AGEPRO model, the stock-recruitment relationship ultimately defines the sustainable
level of harvest and its expected variability over time. This follows from the model
assumption that the stochastic processes of growth, maturation, and natural mortality are
density-independent and stationary throughout the time horizon. Note that the stock-
recruitment relationship does not affect the initial population abundance at the beginning
of the time horizon (see Initial Population Abundance).

The AGEPRO model provides a total of fifteen stochastic recruitment models for
population projection. Ten of the recruitment models are functionally dependent on SSB
while five do not depend on SSB. The USER is responsible for the choice and
parameterization of the recruitment model. The age of recruitment to the fish population is
denoted as AR@ and is either age-1 or age-2 as determined by the USER. A description of
each of the recruitment models follows.

Model 1. Markov Matrix

A Markov matrix approach to modeling recruitment explicitly deals with
uncertainty in the functional relationship and uncertainty in the estimation of population
status. The Markov matrix contains transition probabilities that define the probability of
obtaining a given interval range of recruitment given that SSB was within a defined
interval range. In particular, the distribution of recruitment is assumed to follow a
conditional multinomial distribution where the conditioning is with respect to
appropriately lagged SSB.

Conventional methods for estimation of Markov matrices require far more data
than are generally available in stock assessments. Matrix elements could be approximated
by counting the number of times that a particular recruitment interval obtains from given
SSB interval. In typical age-structured assessment with about 20 recruitment observations,
one might be able to reliably define transition probabilities for a 2x2 matrix. Application
of a Markov model exacerbates rather than solves, the model identifiability problem for
stock and recruitment. For this reason, we describe a general bootstrapping approach that
can be used to approximate the Markov matrix elements. In contrast to the usual Markov
matrix approach, our estimates of transition probabilities are derived from variations about
a hypothesized functional relationship between stock and recruitment, denoted by F(SSB,
θ), where SSB is the appropriately lagged level of spawning stock biomass and θ is a
vector of parameters for the stock-recruitment relationship. In particular, recruitment is
generated by

NR(t) = F(SSB(t-R) ,θ)

 10

In general, nonlinear regression can be applied to obtain a point estimate of θ,
denoted by θ*, in Equation 10. Given the point estimate θ*, bootstrap resampling of the
residuals of the stock-recruitment model can be applied to estimate a set of θ=s. In
particular, suppose that there are T pairs of stock-recruitment values and let et denote the tth

residual from the model, where

Given the set of residuals (E), one bootstrap replicate (D(b)) that consists of T pairs
of NR(t) and SSB(t-R) can be generated by randomly selecting a set of T residuals with
replacement from E. Let E(b) denote the random set of residuals, where E(b)={e1

(b) , e2
(b) ,

..., eT
(b) } and let Y(t)=F(SSB(t), θ*) denote the tth predicted recruitment. These residuals

are then added to the set of original predicted recruitment values and a new parameter
vector (θ(b)) is computed based on the resulting bootstrapped stock-recruitment data set. In
particular, the bootstrap replicate D(b) consists of T pairs of randomly generated
recruitments and observed spawning stock biomasses where

The bootstrapped parameter vector θ(b) generated from D(b) defines one stock-

recruitment curve. By creating a large number of bootstrap replicates and bootstrapped
parameter vectors, a family of stock-recruitment curves can be generated. This family of
curves can then be used to determine a Markov matrix as follows.

First, partition the spawning stock biomass axis (e.g. the horizontal axis) into J
disjoint intervals and the recruitment axis (the vertical axis) into K disjoint intervals. The
derived intervals can be defined as

where SSBj and R k denote endpoints of the disjoint intervals.

The element in the jth row and kth column of the Markov matrix (pj , k) is then

This probability can be approximated by the computing the number of points from
the bth bootstrapped stock recruitment curve that fall within the Ij x Ok cell and summing

et = NR(t) - F(SSB(t-R) ,θ*)

Ij = [SSBj , SSBj+1]

Ok = [Rk , Rk+1]

pj ,k = Prob{ NR 0 Ok * SSB 0 Ij }

 11

those counts over all bootstrap replications. The number of points in a cell for a given
stock-recruitment curve is controlled by the step size δ chosen for the SSB axis. For the

range SSBmin to
SSBmax , the
number of points
evaluated will be
given as

If Cjk

(b) represents the number of points in cell Ij x Ok for the bth bootstrap realization, then
the element in the jth row and kth column of the Markov matrix can be estimated as

Thus for any set of J possible bootstrap realizations, there would be HJ data points
computed.

Regardless of whether the method described above is used to determine a transition
matrix, the AGEPRO software will generate stochastic recruitments based on a USER-
specified Markov matrix when the recruitment flag is set to model 1. The USER can
choose to have up to 25 recruitment levels and up to 10 SSB states (intervals). Here the
expected recruitment levels (NR , k) are the midpoints of the recruitment intervals Ok , that
is, NR , k = (Rk + Rk+1)/2. For each SSB interval, the USER provides the conditional
probability of realizing the expected recruitment level.

Model 2. Empirical Recruits Per Spawning Biomass Distribution

In some cases, it may be appropriate to assume that the distribution of recruits per
spawner is independent of the number of spawners. The recruitment per spawning
biomass (R/SSB) model randomly generates recruitment under the assumption that the
distribution of the R/SSB ratio is stationary and independent of stock size. To describe this
nonparametric approach, let Yt be the R/SSB ratio for the tth stock-recruitment data point

H =
SSBmax - SSBmin

δ

Prob{ NR 0 Ok * SSB 0 Ij } =

B
j

b=1
C

(b)
jk

K
j

k=1

B
j

b=1
C

(b)
jk

 12

and let Rs represent the sth element in the ordered set of Yt. The probability density
function for Rs, denoted as f(Rs), is 1/T for all values of R/SSB 0 Rs where T = the number
of stock-recruitment data points. Let F(Rs) denote the cumulative distribution function

(cdf). Let F(Rmin) = 0 and F(Rmax) = 1 so that the cdf of Rs can be written as
Random values of R/SSB can be generated by applying the probability integral

transform to the empirically derived cdf. Let U be a uniformly distributed random
variable on the interval [0,1]. The value of R/SSB corresponding to U is determined by
applying the inverse of the cdf F(Rs). In particular, when U is an integer multiple of 1/(T-
1) so that U=s/(T-1) then R/SSB = F-1(U) = Rs. Otherwise R/SSB can be obtained by

linear interpolation. In particular, if (s-1)/(T-1) < U < s/(T-1), then

 Solving for R/SSB as a function of U yields

where the interpolation index s (Equation 19) is determined as the greatest integer in

1+U(T-1). Given a random value of R/SSB, recruitment is then generated as
The AGEPRO software can generate stochastic recruitments based on a USER-specified
set of stock-recruitment data. There can be up to 100 stock-recruitment data points.

Model 3. Empirical Recruitment Distribution

An empirical model for the estimation of recruitment is to draw randomly from the
observed set of recruitments { NR(1), NR(2), ..., NR(T)} taken from the assessment. Here
the recruitment distribution is a multinomial random variable where the probability of
randomly choosing a particular recruitment level is 1/T given T observed recruitments.
This approach is nonparametric and assumes that future recruitment is totally independent

Yt =
NR(t)

SSB(t-R)

F(Rs) =
s-1
T-1

U =
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞s

T-1 -
s-1
T-1

Rs+1 - Rs []RªSSB - Rs + ⎝⎜
⎛

⎠⎟
⎞s-1

T-1

RªSSB = (T-1)(Rs+1-Rs)⎝⎜
⎛

⎠⎟
⎞U-

s-1
T-1 + Rs

NR(t) = SSB(t-R) CRªSSB

 13

of spawning stock biomass. When current levels of SSB are near the midrange of
historical values this assumption is acceptable. However, if contemporary SSB values are
near the bottom of the range, then this approach could be dangerously optimistic, for it
assumes that all historically observed recruitment levels are possible, irrespective of SSB.
The AGEPRO software permits up to 100 observed recruitments for the USER-specified
recruitment distribution.
Note that the empirical recruitment distribution model can be used to make deterministic
projections by specifying a single observed recruitment. In this case, recruitment will be
constant throughout the time horizon.

Model 4. Two-Stage Empirical Recruits Per Spawning Biomass Distribution

The two-stage recruits per spawning biomass model is a direct generalization of the
R/SSB model where the spawning stock of the population is categorized into Alow@ and
Ahigh@ states. In particular, there is an R/SSB distribution for the low SSB state and an
R/SSB distribution for the high SSB state. Let FLOW be the cdf and let TLOW be the number
of R/SSB values for the low SSB state. Similarly, let FHIGH be the cdf and let THIGH be the
number of R/SSB values for the high SSB state. Further, let SSB* denote the cutoff level
of SSB such that, if SSB>SSB*, then SSB is considered to be in the high state, while if
SSB<SSB* then SSB is in the low state. Recruitment is stochastically generated from FLOW
and TLOW using Equations (20) and (21) when SSB is in the low state. Conversely,
Recruitment is stochastically generated from FHIGH and THIGH using Equations (20) and
(21) when SSB is in the high state. The AGEPRO software can generate stochastic
recruitments for the two-stage model given a USER-specified set of stock-recruitment data
of up to 100 stock-recruitment data points per SSB state.

Model 5. Beverton-Holt Curve With Lognormal Error

The Beverton-Holt curve with lognormal errors is a parametric model of
recruitment generation where survival to recruitment age is density dependent and subject
to stochastic variation. The Beverton-Holt curve with lognormal error generates

recruitment as
where the stock-recruitment parameters Aa@, Ab@, and Aσw

2" and the conversion coefficients
for recruitment (cR) and spawning stock biomass (cSSB) are specified by the USER. Here it

nR(t) =
a Cssb(t-R)
b+ssb(t-R) Cew

where w - N(0, σ
2
w),

NR(t) = cR CnR(t),
 SSB(t-R) = cSSB Cssb(t-R)

 14

is assumed that the parameter estimates for the Beverton-Holt curve have been estimated
in relative units determined by the USER (e.g. nR(t) and ssb(t-R)) and then converted to
absolute values with the conversion coefficients. In the AGEPRO software, the absolute
value for recruitment is numbers of fish, while for SSB, the absolute value is kilograms of
SSB. For example, if the stock-recruitment curve was estimated with stock-recruitment
data that were measured in millions of fish and thousands of metric tons of SSB, then
cR=106 and cSSB=106. Note that it is common to estimate the parameters of the stock-
recruitment curve in relative units to reduce the potential effects of roundoff error on
parameter estimates.

Model 6. Ricker Curve With Lognormal Error

The Ricker curve with lognormal error is a parametric model of recruitment
generation where survival to recruitment age is density dependent and subject to stochastic

variation. The Ricker curve with lognormal error generates recruitment as
where the stock-recruitment parameters Aa@, Ab@, and Aσw

2" and the conversion coefficients
for recruitment (cR) and spawning stock biomass (cSSB) are specified by the USER. It is
assumed that the parameter estimates for the Ricker curve have been estimated in relative
units determined by the USER (e.g. nR(t) and ssb(t-R)) and then converted to absolute
values with the conversion coefficients. Note that the absolute value for recruitment is
numbers of fish, while for SSB, the absolute value is kilograms of SSB.

Model 7. Shepherd Curve With Lognormal Error

The Shepherd curve with lognormal error is a parametric model of recruitment
generation where survival to recruitment age is density dependent and subject to stochastic

nR(t) = a Cssb(t-R) Ce-b Cssb(t-R) Cew

where w - N(0, σ
2
w),

NR(t) = cR CnR(t),
 SSB(t-R) = cSSB Cssb(t-R)

nR(t) =
a Cssb(t-R)

1+⎝⎜
⎛

⎠⎟
⎞ssb(t-R)

k
b

Cew

where w - N(0, σ
2
w),

NR(t) = cR CnR(t),
 SSB(t-R) = cSSB Cssb(t-R)

 15

variation. The Shepherd curve with lognormal error generates recruitment as
where the stock-recruitment parameters Aa@, Ab@, Ak@, and Aσw

2" and the conversion
coefficients for recruitment (cR) and spawning stock biomass (cSSB) are specified by the
USER. It is assumed that the parameter estimates for the Shepherd curve have been
estimated in relative units determined by the USER (e.g. nR(t) and ssb(t-R)) and then
converted to absolute values with the conversion coefficients. Note that the absolute value
for recruitment is numbers of fish, while for SSB, the absolute value is kilograms of SSB.

Model 8. Lognormal Distribution

The lognormal distribution provides a parametric model for stochastic recruitment

generation that is independent of spawning stock biomass. The lognormal distribution is
where the lognormal distribution parameters μlogR and σlogR (USER inputs the standard
deviation of logR, not the variance) and the conversion coefficients for recruitment (cR)
and spawning stock biomass (cSSB) are specified by the USER. It is assumed that the
parameters of the lognormal distribution have been estimated in relative units determined
by the USER (e.g. nR(t)) and then converted to absolute values with the conversion
coefficients. Note that the absolute value for recruitment is numbers of fish, while for SSB,
the absolute value is kilograms of SSB.

Model 9. Time-Varying Empirical Recruitment Distribution

The time-varying empirical recruitment distribution model is an extension of model
3. This empirical model for the estimation of recruitment draws randomly from a set of T
recruitments levels for year t of the time horizon { NR(t,1), NR(t,2), ..., NR(t,T) }. Here the
recruitment distribution for each year of the time horizon is a multinomial random variable
where the probability of randomly choosing a particular recruitment level is 1/T given T
levels of recruitment. This approach is nonparametric and assumes that future recruitment
is totally independent of spawning stock biomass. Further, it is the responsibility of the
USER to determine an appropriate set of recruitment levels for each year of the time
horizon. The AGEPRO software permits up to 100 observed recruitments for the USER-
specified recruitment distribution for each year of the time horizon. The USER must input
T potential recruitment levels in each year for a total of TY recruitment inputs.

As with model 3, the time-varying empirical recruitment distribution model can be
used to make deterministic projections by specifying a single recruitment level for each

nR(t) = ew

where ew - LN(μlogR , σ
2
logR)

 NR(t) = cR CnR(t)

 16

year of the time horizon. In this case, recruitment will be a USER-defined constant in each
year of the time horizon.

Model 10. Beverton-Holt Curve With Autocorrelated Lognormal Error

The Beverton-Holt curve with autocorrelated lognormal errors is a parametric
model of recruitment generation where survival to recruitment age is density dependent
and subject to serially-correlated stochastic variation. The Beverton-Holt curve with

lognormal error generates recruitment as
where the stock-recruitment parameters Aa@, Ab@, and Aσw

2", the serial correlation parameter
Aφ@, and the conversion coefficients for recruitment (cR) and spawning stock biomass (cSSB)
are specified by the USER.

Model 11. Ricker Curve With Autocorrelated Lognormal Error

The Ricker curve with autocorrelated lognormal error is a parametric model of
recruitment generation where survival to recruitment age is density dependent and subject
to serially-correlated stochastic variation. The Ricker curve with autocorrelated lognormal

error generates recruitment as
where the stock-recruitment parameters Aa@, Ab@, and Aσw

2", the serial correlation parameter
Aφ@, and the conversion coefficients for recruitment (cR) and spawning stock biomass (cSSB)
are specified by the USER.

nR(t) =
a Cssb(t-R)
b+ssb(t-R) Ceε

where εt=εt-1φ+wt w - N(0, σ
2
w),

NR(t) = cR CnsubR(t),
 SSB(t-R) = cSSB Cssb(t-R)

nR(t) = a Cssb(t-R) Ce-b Cssb(t-R) Ceε

where εt=εt-1φ+wt w - N(0, σ
2
w),

NR(t) = cR CnsubR(t),
 SSB(t-R) = cSSB Cssb(t-R)

 17

Model 12. Shepherd Curve With Autocorrelated Lognormal Error

The Shepherd curve with autocorrelated lognormal error is a parametric model of
recruitment generation where survival to recruitment age is density dependent and subject
to serially-correlated stochastic variation. The Shepherd curve with autocorrelated
lognormal error generates recruitment as

where the stock-recruitment parameters Aa@, Ab@, Ak@, and Aσw

2", the serial correlation
parameter Aφ@, and the conversion coefficients for recruitment (cR) and spawning stock
biomass (cSSB) are specified by the USER.

Model 13. Autocorrelated Lognormal Distribution

The autocorrelated lognormal distribution provides a parametric model for
stochastic recruitment generation with serial correlation that is independent of spawning

stock biomass. The autocorrelated lognormal distribution is
where the lognormal distribution parameters μlogR and σlogR (USER inputs the standard
deviation of logR, not the variance), the serial correlation parameter Aφ@, and the
conversion coefficients for recruitment (cR) and spawning stock biomass (cSSB) are
specified by the USER.

Model 14. Empirical Cumulative Distribution Function of Recruitment

The empirical cumulative distribution function (cdf) of recruitment can be used to
randomly generates recruitment under the assumption that the distribution of the R is

nR(t) =
a Cssb(t-R)

1+⎝⎜
⎛

⎠⎟
⎞ssb(t-R)

k
b

Ceε

where εt=εt-1φ+wt w - N(0, σ
2
w),

NR(t) = cR CnR(t),
 SSB(t-R) = cSSB Cssb(t-R)

nR(t) = eε

where εt=εt-1φ+wt w - N(μlogR , σ
2
logR)

 NR(t) = cR CnR(t)

 18

stationary and independent of stock size. To describe this nonparametric approach, let Rs
represent the sth element in the ordered set of observed recruitment values. The probability
density function for Rs, denoted as f(Rs), is 1/T for all values of R 0 Rs where T is the
number of stock-recruitment data points. Let F(Rs) denote the cumulative distribution

function (cdf). Let F(Rmin) = 0 and F(Rmax) = 1 so that the cdf of Rs can be written as
Random values of R can be generated by applying the probability integral

transform to the empirically derived cdf. Let U be a uniformly distributed random
variable on the interval [0,1]. The value of R corresponding to U is determined by
applying the inverse of the cdf F(Rs). In particular, when U is an integer multiple of 1/(T-
1) so that U=s/(T-1) then R = F-1(U) = Rs. Otherwise R can be obtained by linear

interpolation. In particular, if (s-1)/(T-1) < U < s/(T-1), then

 Solving for R as a function of U yields

where the interpolation index s is determined as the greatest integer in 1+U(T-1). The
AGEPRO software can generate stochastic recruitments based on a USER-specified set of
up to 100 stock-recruitment data points.

Model 15. Two-Stage Empirical Cumulative Distribution Function of Recruitment

The two-stage empirical cumulative distribution function of recruitment model is a
direct generalization of Model 14 where the spawning stock of the population is
categorized into Alow@ and Ahigh@ states. In particular, there is a cdf for R when the
population is in the low SSB state and a cdf for R when the population is in the high SSB
state. Let FLOW be the cdf and let TLOW be the number of R values for the low SSB state.
Similarly, let FHIGH be the cdf and let THIGH be the number of R values for the high SSB
state. Further, let SSB* denote the cutoff level of SSB such that, if SSB>SSB*, then SSB
is considered to be in the high state, while if SSB<SSB* then SSB is in the low state.
Recruitment is stochastically generated from FLOW and TLOW using Equations (32) and (33)
when SSB is in the low state. Conversely, Recruitment is stochastically generated from
FHIGH and THIGH using Equations (32) and (33) when SSB is in the high state. The

F(Rs) =
s-1
T-1

U =
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞s

T-1 -
s-1
T-1

Rs+1 - Rs []R - Rs + ⎝⎜
⎛

⎠⎟
⎞s-1

T-1

R = (T-1)(Rs+1-Rs)⎝⎜
⎛

⎠⎟
⎞U-

s-1
T-1 + Rs

 19

AGEPRO software can generate stochastic recruitments for the two-stage model given a
USER-specified set of stock-recruitment data of up to 100 stock-recruitment data points.
Constrained Recruits Per Spawning Biomass For Lognormal Error Models

The lognormal error terms for the six parametric recruitment models and the two
lognormal distribution models can produce unusual realizations of R/SSB in a projection
analysis because an estimated lognormal distribution can be highly skewed with a very
wide tail. The impact of an unusual recruitment can be substantial in a projection analysis.
Therefore, realized R/SSB values can be constrained in the AGEPRO model for the 4
stock-recruitment models that use the lognormal distribution. There are two potential
constraints are based on the level of SSB within the stock. Let SSBCUT denote a cutoff
level of SSB, and let [LLOW , ULOW] and [LHIGH , UHIGH] denote two intervals. Whenever
SSB(t) <SSBCUT, then the realized R/SSB value generated from the recruitment model
must be within the interval [LLOW , ULOW]. If the realized R/SSB falls outside this
interval, additional recruitments are simulated with the stochastic recruitment model until
one falls within the constraining interval. Similarly, whenever SSB(t) >SSBCUT, then the
realized R/SSB value generated from the recruitment model must be within the interval [
LHIGH , UHIGH]. If R/SSB values are expected to be more variable when SSB is above
SSBCUT, then it is natural to choose to have the interval [LLOW , ULOW] to be within the
interval [LHIGH , UHIGH]. In this case, the endpoints of the intervals are ordered as LHIGH <
LLOW < ULOW < UHIGH .

The use of R/SSB constraints can be appropriate when the population is near an
historic low level of SSB. In this case, it would be natural to consider SSBCUT to be the
historic minimum value of SSB. Extrapolation of what R/SSB values would result if
SSB(t) falls below SSBCUT could have substantial influence on determining a rebuilding
strategy for the population. For example, one might constrain the realized R/SSB values
when SSB(t) falls below SSBCUT to be between the 10th and 90th percentiles of the
empirical R/SSB distribution taken from the assessment. When SSB(t) is above SSBCUT,
one might consider other bounds on the R/SSB values such as 1/100 of the minimum
observed R/SSB value or 100 times the maximum observed R/SSB value. Similar
comments apply for a population that is near its historic maximum level of SSB. While the
AGEPRO software requires the USER to specify a lower and an upper constraining
interval for R/SSB values when the R/SSB constraint option is chosen, it should be noted
that the USER can use a single interval by either (i) setting the intervals to be equal or (ii)
setting SSBCUT to be 0.

Initial Population Abundance

The initial population abundance, N(1), plays a key role in the AGEPRO model
and is defined as the absolute number of fish alive on January 1st of the first year of the
time horizon. Note that N(1) is determined by the assessment model and is entirely
independent of the stock-recruitment model used in the projections. When the recruitment
age is age-1, then N(1) is sufficient to begin the projection. However, when the recruitment

NA(0)
NA-1(0) =

infinity
j

k=1
e-(F+M)k = γ

 20

age is age-2, additional information on fishing mortality at age in the prior year (year 0) is
needed to project recruitment from population size in year 0. In particular, the vector F(0)
of instantaneous fishing mortalities at age is needed, and the partial recruitment vector
(PR(0)) in the prior year must also be provided. This information determines the
abundances N2(0), N3(0), ..., NA-2(0). An additional approximation is needed to back
calculate NA-1(0) and NA(0) because both agegroups are combined in NA(1). Assuming that
recruitment is constant, that fully-recruited fishing mortality is constant, and that both
agegroups are fully recruited, the ratio of NA(0) to NA-1(0) would be determined by the
magnitude of fishing mortality as
for γ a constant. Therefore, based on the definition of survival to the plus-group (Equation
2), the back calculated values for NA-1(0) and NA(0) are
There are two possibilities for determining the initial population abundance in the
AGEPRO model. The first approach is to use the point estimate of N(1) taken from the
assessment along with F(0) PR(0) if age-2 recruitment is used. In this case, the best
estimate of population abundance is being used for projection and this estimate is assumed
to perfectly characterize the initial state of the population. In effect, there is no uncertainty
in the initial state of the population and the purpose of the projection is to characterize the
sampling distribution of key fishery outputs given the initial population size is perfectly
known. The second approach is to provide a set of initial population vectors, { N(1)(1),

N(2)(1), ..., N(B)(1) }, that represent the sampling distribution of the estimator of N(1). In
this case, the assessment model is the estimator of N(1) and the purpose of the projection
is to characterize the sampling distribution of key fishery outputs given the uncertainty in
the estimate of the initial population size. The nonparametric bootstrap provides one
method to generate a sampling distribution for the estimator of N(1). This method has been
applied to the ADAPT tuned-VPA model to generate sampling distributions of N(1) in a
variety of assessments. If the recruitment age is age-2, it is necessary to provide a set of
fully-recruited fishing mortality rates in the previous year, { F(1)(0), F(2)(0), ..., F(B)(0) },
and PR(0), where PR(0) is constant.

Regardless of whether the initial population abundance is a single N(1) or a
distribution of N(1)=s, the USER must also specify the units of the initial population size
vector taken from the assessment model. In particular, it is assumed that the USER
provides a scaled n(1) or a distribution of n(1)=s that are in relative units, and also provides
the conversion coefficient (cN) that converts n(1) to absolute numbers of fish where
 N(1) = cN@ n(1) .

NA-1(0) =
NA(1) Ce[F+M]

1+γ

 NA(0) = γCNA-1(0)

 21

Stochastic Natural Mortality

Natural mortality is often assumed to be constant over recruited ageclasses and to
be equal to its long-term average for assessment purposes. While this simplifying
assumption is important for estimation of historic and current population sizes, it may be
useful to consider the potential effects of variation in the instantaneous natural mortality
rate when performing projections. To this end, it is possible to set natural mortality to be a
random variable in the AGEPRO model. In particular, natural mortality can be modeled as
a uniform random variable for simulation. That is, the natural mortality rate in year t would
be distributed as M(t) - UNIFORM[LM , UM] , where LM and UM are USER-specified
constants. Note that the realized natural mortality rate applies to all ageclasses within N(t).

Although it is likely difficult to estimate LM and UM directly, the USER can choose
LM and UM so that the annual probability of survival in the absence of fishing varies
uniformly as follows. The annual probability of survival (S) is related to the long-term
instantaneous natural mortality rate (M) as S = e-M . If it is reasonable that S varies
uniformly between S-d and S+d for some constant d, then set LM = - ln(S+d) and set UM =
-ln(S-d). For example, if M=0.30 and d=0.1, LM = 0.1734 and UM = 0.4450 would be the
bounds for the uniform random variable. Note that in this example, the interval [LM , UM]
is not symmetric about M=0.30 although S - UNIFORM[0.64 , 0.84]. In the AGEPRO
software, the USER specifies the interval [LM , UM] when the stochastic natural mortality
option is chosen.

Spawning Stock Biomass Threshold

Whether or not a given harvest policy will likely lead to a threshold level of
spawning stock biomass is potentially important for evaluation of the merits of that harvest
policy. In the AGEPRO software, the USER can specify a threshold level of SSB, denoted
by SSBTHRESHOLD , for Sustainable Fisheries Act policy evaluation. This is called the SFA-
threshold option. Let KTHRESHOLD(t) be the number of times that SSB(t) meets or exceeds
the SSBTHRESHOLD in year t where KTHRESHOLD(t) is computed for each year using the entire
set of simulations. An estimate of the probability that SSBTHRESHOLD would be met or

exceeded in year t is then computed as

where KTOTAL(t) is the total number of feasible simulation runs of year t. Note that with
quota-based management, it is possible for a harvest quota to be unattainable for a given
year and simulation because the population abundance is too low to allow the quota to be
taken. When this occurs, the simulation run is defined to be infeasible and the simulation
run ceases. In this case, the denominator in the right-hand side of equation (36) would not

Prob{ SSB(t)$SSBTHRESHOLD } =
KTHRESHOLD(t)

KTOTAL(t)

 22

count that simulation run in the computation of the probability that SSBTHRESHOLD would
be met or exceeded.

Threshold values for total stock biomass (measured on January 1st), mean stock
biomass (as defined by the average numbers at age vector and stock weights at age), and
threshold fishing mortality are evaluated in a similar manner.

Target Fishing Mortality

In some cases, it may be informative to have the specified fishing mortality rate for
F-based management change when the SSBTHRESHOLD is met or exceeded. This might be
reasonable, for example, if the SSBTHRESHOLD represented a rebuilding target for SSB. In
this case, the level of F might be increased from a low rebuilding level in the year after the
target was achieved.

The AGEPRO software gives the USER the option to specify a target F, FTARGET ,
that will be applied in the year following the year in which the SSBTHRESHOLD is met or
exceeded. This is called the F-target option. Note that this option requires that the SSB-
threshold option be chosen. Also note that the F-target option is dynamic so that FTARGET
can be applied only in a year following the year in which the SSBTHRESHOLD is met or
exceeded.

In addition to specifying a target F, the USER must also specify a calendar year in
the time horizon when the F-target option begins, denoted by YF-target. For example, if the
time horizon were the interval of years [1998, 2007] , then YF-target might be chosen to be
2005 if this was a policy option under consideration. Alternatively, choosing YF-target to be
any year less than the first year in the time horizon would mean that the F-target option
would begin in the first year. This implies that FTARGET could be applied in the second
year of the time horizon.

Prediction of Catch-At-Age Index

In some cases, it may be useful to predict a catch-at-age index from a research
survey based on the simulated population sizes from the AGEPRO model. A predicted
survey index could, for example, provide a measure of yearclass strength which might be a
consideration in the evaluation of a harvest policy if a certain index level is reached. The
AGEPRO software gives the option of predicting a survey catch-at-age index based on a
predictive model specified by the USER. Let p denote the age of the fish for the catch-at-
age index and let sp be the predicted value of the survey index. It is assumed that the
predictive model is linear in the scaled numbers of fish at age-p. That is,

 23

where cN is the conversion coefficient for the initial population size vector. Here the USER
must determine the coefficients β0 and β1 prior to the projection analysis. Further, the
USER must specify a critical value of the survey index, sp*, that will be compared to the
realized predictions. In particular, the probability that the critical survey index would
likely be exceeded in each year of the time horizon is evaluated and output.

Landings by Market Category

In some cases, it may be useful to partition projected landings into market
categories for further analysis. This might be done, for example, if there was a need to
evaluate the expected benefits from a harvest policy through fishery revenues where fish
price varied by market category. The AGEPRO software can partition landings at age into
market categories and provide the number of fish and weight of fish in up to three USER-
specified market categories. In particular, the market category option requires the USER to
specify the proportion of each age class that constitute each market category. Let qa , j
denote the proportion of age-a fish in the jth market category and let MC denote the
number of market categories. Then the total number of fish (LN , j (t)) and the total weight

of fish (WN , j(t)) in the jth market category in year t are computed as
Note that the USER must specify the proportions qa , j for each ageclass in N.

sp = β0 + β1 C
Np(t)
cN

LN , j =
A
j

a=R
qa , j Ca(t) C (1 - DFa(t))

 LW , j =
A
j

a=R
qa , j Ca(t) WL , a C (1 - DFa(t))

 24

Age-Structured Projection Software

The age-structured projection software (agepro_v2) was revised during the spring of 1996,
the summer of 1999, and the winter of 2002, to incorporate the useful features of various
versions of the program that were created for specific applications. As a result, USER-
supplied input files for previous versions of the code will need revision to be compatible
with the new program. The required adjustments to older input files, however, are minor in
all cases.

This part of the USER=S GUIDE provides operational details for the AGEPRO
software and is organized into four sections. First, input data requirements and projection
options are covered. The structure of an input file is described and the use of a general
program (SETPRO) to create a new input file or describe an existing input file for is
discussed. Second, model outputs are described in relation to logical flags in the input file.
The structure of an output file is also described. Third, a section on program structure
identifies the flow of data and calculations within the AGEPRO software is provided.
Fourth, a set of examples are provided to identify the flow of data and calculations within
the AGEPRO software. Last, a listing of the AGEPRO source code is provided in
Appendix 2.

Input Data

There are four categories of input data for an AGEPRO projection run: system,
simulation, biological, and fishery. The system data are read from standard input (e.g. from
a terminal or via input redirection) while the simulation, biological and fishery data are
read from an input file. A description of each data category follows.

The system data are the file names for the input and output files for the projection
run. These data are required to run the AGEPRO software. The USER can enter these file
names either from the terminal or through input redirection (see below). With terminal
input, the USER is first prompted for an input file name and then for an output file name.
That is, at the UNIX prompt A>@ the USER would enter

>agepro.exe
>Enter the input filename:
>my_input_filename
>
>Enter the output filename:
>my_output_filename
>
>Projection analysis is running ...
>
>Projection analysis has been completed.

 25

The AGEPRO software checks whether the input file exists and prompts the USER
for another filename if the input file does not exist. Similarly, the software checks whether
the output file already exists and prompts the USER for another filename if the output file
already exists.

The USER can also apply input redirection to specify the input and output file
names in a file. For example, assume that the executable software is named Aagepro.exe@
and that the USER has created a file called Ainput@ with two lines where the first line is the
input filename and the second line is the output filename. To use input redirection to run
AGEPRO, the USER would type

>agepro.exe < input

at the UNIX system prompt. The use of input redirection is recommended for
background processing. In particular, the USER would type

>agepro.exe < input &

at the UNIX system prompt to run the projection in the background. Here it is worth noting
that a large number of projection runs can be run sequentially in the background by writing
a C Shell script loops over a set of input and output file names. It is not recommended that
several projections be run at the same time on a single UNIX workstation due to the
memory requirements of the AGEPRO software in a multitasking environment. Experience
has shown that running several projections simultaneously can cause system crashes.

The simulation data are the inputs needed to setup and define the simulation run.
These data are required to run the AGEPRO software and are read from the input file
(Tables 2 and 3). The first input is a character string that describes the projection run. The
string can be up to 30 characters and should have no blanks. The second input is the base
year of the time horizon, which is the first year of the projection. The third input is the
length of the time horizon, which can be up to 25 years. The fourth input is the number of
simulations to perform for each initial population vector; there can be up to 200
simulations for each initial condition. The fifth input initializes the random number
generator and in particular, gives the number of times to call the pseudo-random number
generator Aran2" (Press et al. 1992) before using the random numbers. Note that this
generator can generate a vast number (approximately 2@1018) pseudo-random numbers
before repeating itself. In comparison, a projection analysis that required 2 random
numbers per simulated year (1 for randomization of recruitment and 1 for randomization of
M) would need only 5@106 random numbers assuming 500 initial population sizes, 200
simulations per initial population size, and 25 years in the time horizon.

The sixth through the twentieth inputs are logical flags that determine simulation
properties (Tables 2 and 3). The sixth input is the age-2 recruitment flag. If true,
recruitment age is age-2; otherwise it is age-1. The seventh input is the mixture flag for

 26

harvesting. If true, catch projections are based on a mixture of F-based and quota-based
management by year; otherwise, the harvest is based on one management strategy. The
eighth input is the discard flag. If true, discards at age are included in the projection
analysis; otherwise, no discards are included in the analysis. The ninth input is the quota-
based management flag. If true, catch projections are based on quotas; otherwise catch
projections are F-based. The tenth input is the constant harvest strategy flag. If true, the
harvest strategy does not change in time, e.g. the F or the quota is fixed; otherwise the
harvest strategy can vary from year to year. The eleventh input is the F-target flag. If true,
then a target value of F is applied in the year after any year when the SSB threshold is
achieved; otherwise no change occurs. The twelfth input is the index flag. If true, a
prediction of an age-specific recruitment index is made; otherwise no prediction is made.
The thirteenth input is the SFA threshold flag. If true, realized SSB, total stock biomass,
mean stock biomass, fully-recruited fishing mortality, and biomass-weighted fishing
mortality are compared to a threshold level; otherwise no comparisons are made. The
fourteenth input is the market category flag. If true, landings are summarized by market
category and output to file; otherwise no market category summaries are made. The
fifteenth input is the total mortality flag. If true, the fraction of total mortality that occurs
prior to spawning can vary from year to year; otherwise there is no annual variation. The
sixteenth input is the partial recruitment flag. If true, the partial recruitment to fishing
mortality vector can vary from year to year; otherwise there is no annual variation.The
seventeenth input is the constant discard flag. If true, the fraction discarded at age is
constant; otherwise the fraction discarded at age can vary from year to year. The
eighteenth input is the bounded recruitment flag. If true, then realized recruitments
generated with the lognormal, Beverton-Holt, Ricker, and Shepherd stock-recruitment
models will be bounded based on realized R/SSB ratios; otherwise no bounds are applied.
The nineteenth input is the constant natural mortality flag. If true, natural mortality is a
constant; otherwise it is a uniformly distributed random variable. The twentieth input is the
bootstrap flag. If true, a file of bootstrapped initial population vectors is used in the
projection analysis; otherwise a single initial population vector is used. Note that each of
the flags must be assigned a logical value in the input file where A1" designates Atrue@
while A0" indicates Afalse@.

The biological data are the values of a set of biological inputs needed to describe
the dynamics of the age-structured population. Most of these data are required to run the
AGEPRO software although some data are optional and dependent upon the simulation
settings (Table 3). The biological data are read from the input file. By convention, optional
inputs will be enumerated sequentially along with required inputs. Note that, if recruitment
age is age-2, there is no accounting of age-1 fish in the model. However, the first element
of age-specific parameter vectors is usually denoted as age-1 with subscripts (Table 3).
The USER should note that this is done solely for notational convenience. In particular, if
recruitment is at age-2, then the USER must input the appropriate age-2 values as the first
element of the age-specific parameter vectors, such as mean spawning weights at age (see
input #23 below) or fraction mature at age (see input #26 below). Again, if the recruitment
age is age-2, the first element of an age-specific parameter vector corresponds to age-2 fish

 27

and parameter values for age-1 fish should not be included in the input file.

The twenty-first input is the number of ageclasses in the population model (A),
where A < 25 along with lower and upper bound on range of ages for computing mean
biomass, Lowerage and Upperage. The twenty-second input is the instantaneous natural
mortality rate (M), if M is constant. If M is not constant, the twenty-second input is the
interval [LM , UM] for stochastic natural mortality. In addition, if the recruitment age is
age-2 natural mortality is stochastic, then the value of M in year 0, the year immediately
prior to the first year in the time horizon must also be input. The twenty-third input is the
vector of mean weights at age in the stock ordered from youngest (left) to oldest (right).
The twenty-fourth input is the vector of mean weights at age in the landings ordered from
youngest (left) to oldest (right). If discards at age are included in the projection, the
twenty-fifth input is the vector of mean weights at age of discarded fish ordered from
youngest (left) to oldest (right). The twenty-sixth input is the vector of fraction mature at
age ordered from youngest (left) to oldest (right). The twenty-seventh input is the fraction
of total mortality that occurs prior to spawning (ZPROJ). If the total mortality flag is true,
then a set of values of ZPROJ must be input. In particular, if the total mortality flag is true
and the recruitment age is age-2 then the value of ZPROJ in the previous year is input first
on one line followed by a line with the vector of values of ZPROJ ordered from the first
(left) to the last (right) year of the time horizon is input. If the total mortality flag is false,
then the constant value of ZPROJ is input, regardless of whether the recruitment age is
age-2.

The twenty-eighth input is the recruitment flag which is a number from 1 to 15 that
identifies the choice of stochastic stock-recruitment model to be used. These models are
numbered 1 to 15 in exact correspondence with their descriptions (see Stock-Recruitment
Relationship). The twenty-ninth input is the set of parameters needed for the chosen
stock-recruitment model. The set of parameters depends on the chosen model and these are
specified in Table 3 for each of the fifteen stock-recruitment models. The thirtieth input is
the set of parameters to constrain recruitment for stock-recruitment models with lognormal
error terms. These parameters are input only if the bounded recruitment flag is true. If this
flag is true, then the endpoints of the constraining intervals are input on one line as LHIGH ,
LLOW , ULOW , UHIGH , while SSBCUT is input on the next line. The thirty-first input is the
set of parameters to define the initial population sizes for projection. The set of parameters
depends on the value of the age-2 recruitment flag and the bootstrap flag, and these are
specified in Table 3. The thirty-second input is the set of parameters for the prediction of a
recruitment index. These parameters are input only if the index flag is true. The thirty-third
input is the SSB threshold, SSBTHRESHOLD. This threshold is input only if the SSB threshold
flag is true. The thirty-fourth input is the set of parameters to apply the F target option.
These parameters are input only if the F target flag is true and are specified in Table 3.

 28

The fishery data are the values of a set of inputs needed to describe the impact of
the fishery on the population. The thirty-fifth input is the set of parameters to define
fishery selectivity through time. These parameters depend upon the partial recruitment and
the age-2 recruitment flag and are specified in Table 3. The thirty-sixth input is the set of
parameters to define age-specific discarding through time. These parameters depend upon
the discard and constant discard flags and are specified in Table 3. The thirty-seventh
input is the set of parameters to define the harvest strategy. These parameters depend upon
the harvest mixture, quota-based, and constant harvest strategy flags and are specified in
the section Table 3. The thirty-eighth input is the set of parameters to define the market
category summarization. These parameters depend upon the market category flag and are
specified in Table 3.

The program SETPRO can be used to create a new input file or to create a list of
the parameters in an existing input file but this program has not yet been updated to be
compatible with the current version of AGEPRO (version 2.0). Regardless, the program
may be useful for constructing a template input file for later modification. SETPRO can be
run from the UNIX prompt by typing Asetpro.exe@ and responding to the menu choices.
That is, to create an input file, one would type

>setpro.exe

 1 = Create an input file

 2 = List an input file

 3 = Exit

 Enter a choice:
1

Enter the name of the input file to be created
my_input_file

Input number: 1
Enter a title for the projection run
This_is_a_new_projection_run

and so on for inputs 2 through 38.

The SETPRO software checks whether the new input file exists and prompts the

 29

USER for another filename if the input file already exists. Similarly, the software checks
whether the output file already exists and prompts the USER for another filename if the
output file already exists.

There are two points to note when using SETPRO to create an input file:

C Entries on a single line must be separated by a comma.

C The USER can respond to the question AAre the input data correct ?@ with the

ENTER key rather than typing AY@ for Ayes@.

Similarly, to create a list of the parameters in an input file, one would type

>setpro.exe

 1 = Create an input file

 2 = List an input file

 3 = Exit

 Enter a choice:
2

Create a file that lists input parameters
Enter the name of the input file
my_input_filename
Enter the name of the list file
my_list_filename

For this example of creating a list file, a new text file named Amy_list_filename@
would be created. This file would contain a brief description of each of the inputs in the
input file Amy_input_filename@. Also note that the SETPRO software checks whether the
old input file exists and prompts the USER for another filename if the input file does not
exist. Similarly, the software checks whether the list file already exists and prompts the
USER for another filename if the list file already exists.

 30

Model Outputs

The AGEPRO software creates an output file that summarizes the projection
analysis results. The first five are descriptive and are always in the output file. The first
output is the character string describing the run (Simulation Input #1). The second and
third outputs are the names of the input and output files for the run (System Data). The
fourth output is the number of the recruitment model (Biological Input #28). The fifth
output is the number of simulations per initial population vector (Simulation Input #4).

The sixth output describes the harvest strategy applied to the stock during each year
in the time horizon. If the harvest strategy is quota-based, then the annual quotas are listed.
If the harvest strategy is F-based, then the annual Fs are listed. If the harvest strategy is a
mixture of quotas and Fs, then the quota or F is listed for each year. The sixth output is
always part of the output file.

The seventh output describes the SSB trajectory through time. Average SSB and
the standard deviation of SSB by year are reported. Percentiles of the empirical
distribution of realized SSB levels by year are also reported. The seventh output is always
in the output file. The eighth output gives the probability that the SSB threshold was
exceeded in each year. The eighth output is in the output file only if the SFA threshold flag
is true.

The ninth output describes the mean biomass (MB) trajectory through time.
Average MB values and the standard deviation of MB by year are reported. Percentiles of
the empirical distribution of realized MB levels by year are also reported. The tenth output
gives the probability that the MB threshold was exceeded in each year. The tenth output is
in the output file only if the SFA threshold flag is true.

The eleventh output describes the fishing mortality weighted by biomass (Fwb)
trajectory through time. Average Fwb values and the standard deviation of Fwb by year are
reported. Percentiles of the empirical distribution of realized Fwb levels by year are also
reported. The twelfth output gives the probability that the Fwb threshold was exceeded in
each year. The twelfth output is in the output file only if the SFA threshold flag is true.

The thirteenth output describes the total stock biomass (TSB) trajectory through
time. Average TSB values and the standard deviation of TSB by year are reported.
Percentiles of the empirical distribution of realized TSB levels by year are also reported.
The fourteenth output gives the probability that the TSB threshold was exceeded in each
year. The fourteenth output is in the output file only if the SFA threshold flag is true.

The fifteenth output describes the recruitment trajectory through time. Average
recruitment and the standard deviation of recruitment by birth year of the yearclass are
reported. Here it is important to note that the recruitment output for year t is the number of
age-R fish in year t+R where R is the age of recruitment (age-1 or age-2). Percentiles of

 31

the empirical distribution of realized recruitment levels by birth year of the yearclass are
also reported. The fifteenth output is always in the output file.

The sixteenth output describes the predictions of a catch-at-age index through time.
Averages of the estimated index and the standard deviation of the estimated index by year
are reported. Percentiles of the empirical distribution of the estimated index by year are
also reported. The sixteenth output also gives the probability that the predicted index
exceeded a USER-specified critical value in each year. The sixteenth output is in the
output file only if the index flag is true.

The seventeenth output describes realized landings through time under an F-based
harvest strategy. Average landings and the standard deviation of landings by year are
reported. Percentiles of the empirical distribution of landings by year are also reported.
The seventeenth output is in the output file if either the quota-based flag is true or the
harvest mixture flag is true.

The eighteenth output describes landings by market category in each year. Average
landings in weight and number of fish and the standard deviation of these landings by year
are reported for each market category. Percentiles of the empirical distribution of landings
in weight and number of fish by year are also reported for each market category. The
eighteenth output is in the output file only if the market category flag is true. Note also that
if the market category flag is true, a separate file containing the individual realizations of
the landings by market category is output. The structure of the market category file is as
follows. The first part of the market category file lists the average total weight (kg) and
numbers of fish by year followed by the median total weight (kg) and numbers of fish by
year for each market category. The list for market category 1 appears first, followed by the
list for market category 2, and the list for market category 3, if necessary. The second part
of the market category file gives the realized set of landings in weight by year for each
simulation with the landings broken out by market category. For each year in the time
horizon, there is one line in the market category file for each simulated landing. The first
entry on the line is the total landings by weight followed by the amount landed in market
category 1, market category 2, and market category 3. All landed weights are reported in
kilograms. Note that the market category file can require substantial disk storage space if
the number of initial population sizes and simulations is large.

The nineteenth output describes the total weight discarded through time. Averages
of discards and the standard deviation of discards by year are reported. Percentiles of the
empirical distribution of the discards by year are also reported. The nineteenth output is in
the output file only if the discard flag is true.

The twentieth output describes realized F through time under a quota-based harvest
strategy. Average F and the standard deviation of F by year are reported. Percentiles of the
empirical distribution of F by year are also reported. The twentieth output is in the output
file if either the quota-based flag is true, the F target flag is true, or the harvest mixture flag
is true. The twenty-first output gives the probability that the fully-recruited fishing

 32

mortality threshold was exceeded in each year. The twenty-first output is in the output file
only if the SFA threshold flag is true.

Program Structure

The AGEPRO software is a structured program originally written in Fortran 77
(Metcalf 1985) and later translated to Fortran 90 (Metcalf and Reid 1998). The source code
is provided with this USER=S GUIDE (Appendix 2). The program uses standard Fortran 77
syntax along with Fortran 90 syntax with one exception. The exception is the use of the do
while-end do syntax for looping. Although the do while-end do syntax is not standard
Fortran 77, most compilers will accept this syntax. For example, the Fortran compilers
(f77) found on the SUN OS 4.3 and the SGI IRIX 5.3 operating systems accept the do
while-end do syntax.

The AGEPRO software is structured into 8 sections: variable declarations, read
system data, read input data, initialize variables, projection, summarize results, output
results, function and subroutine declarations. These sections are identified in the source
code (Appendix 2). Brief descriptions of two sections, projection and function and
subroutine declarations are provided below.

The projection section consists of 3 nested loops. The outer loop is over the
number of initial population vectors (IC loop). The middle loop is over the number of
simulations to perform for each initial population vector (SIM loop). The inner loop is over
the number of time periods within the time horizon (TIME loop). The projection section
ends when all loops have been completed. There can be up to 500 initial population
vectors, 200 simulations per initial population vector, and 25 time periods for a maximum
of 2.5 million loops. Note that if a harvest quota is too large to be taken from the available
population size at any time within the time loop, the time loop is exited and that particular
combination of initial population vector and simulation is marked as being infeasible for
the summarization of results.

Excluding the memory allocation subroutines, the function and subroutine declarations
section consists of 3 functions and 12 subroutines. The 3 functions are taken from Press et
al. (1992); these are gasdev(), ran2(), and rtsafe(). The function gasdev() generates a
standard unit normal random deviate. The function ran2() generates a uniformly
distributed random variable on the interval [0,1]. The function rtsafe() numerically
computes the root of a given equation specified with the subroutine funcd(). The 12
subroutines are calc_catch(), calc_next(), calc_ssb(), calc_meanB(), calc_totB(),
calc_FmeanB(), funcd(), hpsort(), simavg(), simsd(), summarize(), and warmup(). The
subroutine cal_catch() computes the catch at age for a given F and population size. The
subroutine calc_next() computes the population vector in the next time period given the
current population vector, recruitment, and F. The subroutine calc_ssb() computes
spawning stock biomass for a given population vector and F. The subroutine calc_meanB()

 33

computes mean stock biomass for a given population vector and F. The subroutine
calc_totB() computes total stock biomass for a given population vector and F. The
subroutine calc_FmeanB() computes fishing mortality weighted by biomass for a given
population vector and F. The subroutine funcd() computes the value and derivative of the
function L(F)-Q for a given value of F and quota Q. The subroutine hpsort() sorts an array
and is taken from Press et al. (1992). The subroutine simavg() computes the average of the
feasible values for model outputs such as SSB and recruitment. The subroutine simsd()
computes the standard deviation of the feasible values for model outputs such as SSB and
recruitment. The subroutine summarize() computes averages, standard deviations, and
percentiles of model outputs. The subroutine warmup() initializes the starting point in the
sequence of pseudo-random numbers generated with the function ran2().

Examples

Three examples of projection runs are presented below to illustrate general features of the
AGEPRO model. Note that these examples are hypothetical. Further, they were created
using the version 1.21 AGEPRO software.

Example 1 (example based on AGEPRO version 1.21)

The first example is taken from a hypothetical projection analysis for yellowtail
flounder. This example illustrates a projection with age-2 recruitment, an initial
distribution of population vectors, and discards at age. The projection begins in 1994 with
a time horizon of 12 years. There are 5 simulations performed for each of 500 initial
population vectors. The recruitment age is age-2 and harvest is F-based and time-varying.
Realized Ssb levels are compared to a threshold and natural mortality is constant. The
stock-recruitment model is Beverton-Holt with lognormal error. Below are the list file
created with the SETPRO software and the output file created with the AGEPRO software.

List of Input File for Example 1

TITLE OF THE PROJECTION RUN
flounder_example1

FIRST YEAR OF THE PROJECTION RUN
 1994

LENGTH OF THE TIME HORIZON
 12

NUMBER OF SIMULATIONS PER INITIAL POPULATION SIZE
 5

POSITIVE SEED FOR RANDOM NUMBER GENERATION

 34

 85942

AGE OF RECRUITMENT
RECRUITMENT AT AGE-2

MIXED HARVEST STRATEGY
NO MIXTURE OF FISHING MORTALITIES AND QUOTAS

DISCARDS
DISCARDS AT AGE INCLUDED

TYPE OF HARVEST
HARVEST SET BY FISHING MORTALITY RATE

HARVEST STRATEGY
TIME-VARYING

TARGET F
TARGET F IS NOT INCLUDED

SURVEY CATCH-AT-AGE INDEX
NO SURVEY INDEX IS PREDICTED

SSB THRESHOLD
SSB IS COMPARED TO THRESHOLD

LANDINGS BY MARKET CATEGORY
LANDINGS ARE NOT SUMMARIZED BY CATEGORY

FRACTION OF TOTAL MORTALITY PRIOR TO SPAWNING
CONSTANT IN TIME

PARTIAL RECRUITMENT
CONSTANT IN TIME

DISCARD FRACTION AT AGE
CONSTANT IN TIME

BOUNDED RECRUITMENT
NO R/SSB CONSTRAINTS ARE USED

NATURAL MORTALITY
NATURAL MORTALITY IS CONSTANT

 35

INITIAL POPULATION SIZE
DISTRIBUTION OF INITIAL POPULATION SIZES

NUMBER OF AGE CLASSES
 5

CONSTANT NATURAL MORTALITY
 0.200000

MEAN WEIGHTS AT AGE
 0.315000 0.393000 0.526000 0.656000 0.939000

MEAN LANDED WEIGHTS AT AGE
 0.315000 0.393000 0.526000 0.656000 0.939000

MEAN DISCARDED WEIGHTS AT AGE
 0.157000 0.256000 0.313000 0.656000 0.939000

FRACTION MATURE AT AGE
 0.880000 1.000000 1.000000 1.000000 1.000000

FRACTION OF TOTAL MORTALITY BEFORE SPAWNING
 0.416670

STOCHASTIC RECRUITMENT MODEL
 5

BEVERTON-HOLT WITH LOGNORMAL ERROR MODEL

PARAMETERS A, B, AND RESIDUAL VARIANCE
 32943.605469 10122.372070 0.470113

CONVERSION COEFFICIENTS FOR SSB AND RECRUITMENT
 1000.000 1000.000

DISTRIBUTION OF INITIAL POPULATION SIZE

NUMBER OF INITIAL POPULATION VECTORS
 500

FILE WITH INITIAL POPULATION VECTORS
gbyt94n2.dat

CONVERSION COEFFICIENT

 36

 1000000.000

FILE WITH FISHING MORTALITY IN PREVIOUS YEAR
gbyt94ff.dat

SSB THRESHOLD
 10000000.000

CONSTANT PARTIAL RECRUITMENT
PARTIAL RECRUITMENT AT AGE
 0.140000 0.510000 1.000000 1.000000 1.000000

CONSTANT DISCARD FRACTION AT AGE
 0.583000 0.261000 0.072000 0.000000 0.000000

HARVEST SET BY FISHING MORTALITY
TIME-VARYING FISHING MORTALITY BY YEAR
 1.080000 0.960000 0.840000 0.720000 0.600000 0.600000 0.600000
0.600000 0.600000 0.600000 0.600000 0.600000

Output File for Example 1

PROJECTION RUN: flounder_example1
 INPUT FILE: example1
 OUTPUT FILE: example1.out
 RECRUITMENT MODEL: 5
 NUMBER OF SIMULATIONS: 5

 F-BASED PROJECTIONS
 TIME-VARYING F
 YEAR F
1994 1.080
1995 0.960
1996 0.840
1997 0.720
1998 0.600
1999 0.600
2000 0.600
2001 0.600
2002 0.600
2003 0.600
2004 0.600
2005 0.600

 37

 SPAWNING STOCK BIOMASS (THOUSAND MT)
 YEAR AVG SSB (000 MT) STD
1994 5.101 2.376
1995 6.128 2.779
1996 7.416 3.751
1997 8.899 4.595
1998 10.980 5.756
1999 13.049 6.538
2000 14.957 7.332
2001 16.668 7.937
2002 18.306 8.621
2003 19.481 8.982
2004 20.507 9.063
2005 21.403 9.403

 PERCENTILES OF SPAWNING STOCK BIOMASS (000 MT)
 YEAR 1% 5% 10% 25% 50% 75% 90% 95% 99%
1994 2.067 2.428 2.725 3.439 4.492 6.099 8.232 9.690 13.420
1995 2.260 2.876 3.233 4.165 5.526 7.459 9.690 11.370 15.750
1996 2.490 3.244 3.696 4.895 6.600 8.948 12.003 14.371 20.336
1997 2.757 3.641 4.348 5.700 7.837 10.849 14.548 17.315
25.091
1998 3.312 4.428 5.243 7.030 9.841 13.414 17.906 21.854
30.584
1999 3.881 5.316 6.370 8.542 11.700 15.938 21.654 25.202
34.148
2000 4.385 6.236 7.463 9.825 13.437 18.157 24.382 28.676
39.935
2001 4.925 7.330 8.540 11.083 15.031 20.322 26.839 31.169
43.905
2002 5.489 7.987 9.302 12.349 16.577 22.513 28.951 33.436
47.962
2003 6.417 8.594 10.009 13.277 17.731 23.590 31.040 35.932
48.168
2004 6.869 9.325 10.933 14.140 18.814 25.143 32.520 37.044
49.945
2005 7.197 10.033 11.566 14.755 19.522 25.978 33.108 38.824
50.394

 ANNUAL PROBABILITY THAT SSB EXCEEDS THRESHOLD: 10.00000
THOUSAND MT
 YEAR Pr(SSB > Threshold Value)
1994 0.044
1995 0.085

 38

1996 0.180
1997 0.315
1998 0.490
1999 0.626
2000 0.736
2001 0.819
2002 0.871
2003 0.901
2004 0.933
2005 0.950

 RECRUITMENT UNITS ARE: 1000000. FISH
 BIRTH
 YEAR AVG RECRUITMENT STD
1994 10.049 8.157
1995 13.242 11.344
1996 14.704 12.310
1997 17.057 15.298
1998 18.805 15.258
1999 20.668 17.354
2000 22.322 18.708
2001 24.177 20.117
2002 24.288 20.911
2003 25.506 19.824
2004 26.336 21.388
2005 26.760 20.049

 PERCENTILES OF RECRUITMENT UNITS ARE: 1000000. FISH
 BIRTH
 YEAR 1% 5% 10% 25% 50% 75% 90% 95% 99%
1994 1.444 2.422 3.198 4.854 7.724 12.589 19.332 25.640
41.651
1995 1.869 2.944 3.917 6.177 10.358 16.397 25.731 33.256
57.732
1996 2.101 3.441 4.380 6.940 11.332 18.539 28.340 36.187
67.485
1997 2.345 3.804 5.093 7.763 13.065 21.112 32.158 42.134
75.992
1998 2.364 4.082 5.397 8.810 14.356 23.990 37.089 49.613
76.260
1999 3.015 4.872 6.222 9.707 15.861 26.014 40.548 50.414
86.269
2000 3.094 5.263 6.966 10.743 17.225 27.580 42.758 54.902
91.411

 39

2001 3.448 5.604 7.356 11.581 18.708 30.349 47.027 59.455
102.192
2002 3.248 5.859 7.399 11.471 18.590 30.351 45.832 62.045
103.841
2003 3.716 6.169 8.017 12.037 19.977 32.229 49.969 63.617
96.740
2004 4.014 6.778 8.400 12.894 20.412 32.844 51.225 66.255
100.983
2005 3.881 6.549 8.462 13.223 21.467 33.395 51.896 66.971
102.840

 LANDINGS FOR F-BASED PROJECTIONS
 YEAR AVG LANDINGS (000 MT) STD
1994 1.457 0.390
1995 1.848 0.740
1996 2.372 1.064
1997 2.481 1.159
1998 2.748 1.371
1999 3.470 1.729
2000 4.155 2.066
2001 4.750 2.257
2002 5.294 2.475
2003 5.787 2.660
2004 6.194 2.810
2005 6.495 2.874

 PERCENTILES OF LANDINGS (000 MT)
 YEAR 1% 5% 10% 25% 50% 75% 90% 95% 99%
1994 0.762 0.920 0.991 1.170 1.412 1.710 1.978 2.168 2.539
1995 0.825 0.974 1.092 1.336 1.672 2.192 2.816 3.281 4.374
1996 0.860 1.111 1.262 1.603 2.138 2.922 3.787 4.401 5.758
1997 0.866 1.115 1.282 1.675 2.233 3.004 3.924 4.663 6.341
1998 0.865 1.163 1.359 1.806 2.461 3.369 4.394 5.283 7.211
1999 1.060 1.458 1.726 2.269 3.130 4.263 5.538 6.681 9.481
2000 1.272 1.730 2.057 2.729 3.758 5.053 6.716 7.921 11.070
2001 1.458 2.033 2.399 3.159 4.290 5.765 7.800 8.998 12.613
2002 1.656 2.336 2.721 3.604 4.808 6.447 8.486 9.689 14.020
2003 1.765 2.562 3.052 3.948 5.234 7.117 9.049 10.550 15.027
2004 2.037 2.805 3.235 4.236 5.692 7.496 9.718 11.094 15.337
2005 2.178 2.991 3.472 4.505 5.983 7.859 10.206 11.698 15.389

 DISCARDS FOR F-BASED PROJECTIONS
 YEAR AVG DISCARDS (000 MT) STD
1994 0.262 0.118

 40

1995 0.358 0.179
1996 0.334 0.174
1997 0.338 0.196
1998 0.340 0.196
1999 0.393 0.228
2000 0.438 0.241
2001 0.478 0.264
2002 0.519 0.286
2003 0.549 0.302
2004 0.566 0.308
2005 0.587 0.307

 PERCENTILES OF DISCARDS (000 MT)
 YEAR 1% 5% 10% 25% 50% 75% 90% 95% 99%
1994 0.095 0.128 0.142 0.179 0.233 0.307 0.423 0.492 0.679
1995 0.111 0.148 0.174 0.229 0.314 0.448 0.601 0.700 0.917
1996 0.104 0.138 0.162 0.215 0.295 0.408 0.546 0.664 0.945
1997 0.089 0.127 0.150 0.208 0.294 0.414 0.575 0.710 1.008
1998 0.087 0.125 0.152 0.208 0.296 0.417 0.571 0.701 1.047
1999 0.104 0.145 0.177 0.240 0.342 0.485 0.663 0.813 1.165
2000 0.118 0.165 0.197 0.273 0.383 0.537 0.735 0.909 1.303
2001 0.130 0.184 0.223 0.302 0.417 0.590 0.801 0.952 1.438
2002 0.141 0.201 0.240 0.326 0.453 0.640 0.861 1.021 1.524
2003 0.157 0.213 0.255 0.343 0.487 0.670 0.916 1.075 1.590
2004 0.166 0.226 0.268 0.361 0.500 0.680 0.941 1.132 1.591
2005 0.174 0.237 0.281 0.374 0.522 0.726 0.963 1.142 1.628

Example 2 (example based on AGEPRO version 1.21)

The second example is also taken from a hypothetical projection analysis for
yellowtail flounder. This example illustrates a projection with age-2 recruitment, a single
initial population vector, stochastic natural mortality, time-varying total mortality prior to
spawning, time-varying partial recruitment, and market category summaries. As in
example 1, the projection begins in 1994 with a time horizon of 12 years. There are 200
simulations performed for a single initial population vector. In contrast to example 1,
natural mortality is random, the partial recruitment vector changes in the second year, and
the fraction of total mortality prior to spawning changes from 0.3 in 1993 to 0.4167 in
1994. Summaries of landings in 2 market categories are listed but the raw data are not for
brevity. Below are the list file and output file.

 41

List of Input File for Example 2

TITLE OF THE PROJECTION RUN
flounder_example2

FIRST YEAR OF THE PROJECTION RUN
 1994

LENGTH OF THE TIME HORIZON
 12

NUMBER OF SIMULATIONS PER INITIAL POPULATION SIZE
 200

POSITIVE SEED FOR RANDOM NUMBER GENERATION
 5190

AGE OF RECRUITMENT
RECRUITMENT AT AGE-2

MIXED HARVEST STRATEGY
NO MIXTURE OF FISHING MORTALITIES AND QUOTAS

DISCARDS
DISCARDS AT AGE INCLUDED

TYPE OF HARVEST
HARVEST SET BY FISHING MORTALITY RATE

HARVEST STRATEGY
TIME-VARYING

TARGET F
TARGET F IS NOT INCLUDED

SURVEY CATCH-AT-AGE INDEX
NO SURVEY INDEX IS PREDICTED

SSB THRESHOLD
SSB IS COMPARED TO THRESHOLD

LANDINGS BY MARKET CATEGORY
LANDINGS ARE SUMMARIZED BY CATEGORY

 42

FRACTION OF TOTAL MORTALITY PRIOR TO SPAWNING
TIME-VARYING

PARTIAL RECRUITMENT
TIME-VARYING

DISCARD FRACTION AT AGE
CONSTANT IN TIME

BOUNDED RECRUITMENT
NO R/SSB CONSTRAINTS ARE USED

NATURAL MORTALITY
NATURAL MORTALITY IS A RANDOM VARIABLE

INITIAL POPULATION SIZE
SINGLE INITIAL POPULATION SIZE

NUMBER OF AGE CLASSES
 5

LOWER AND UPPER BOUND FOR RANDOM NATURAL MORTALITY
 0.180000 0.220000

NATURAL MORTALITY IN PREVIOUS YEAR
 0.200000

MEAN WEIGHTS AT AGE
 0.315000 0.393000 0.526000 0.656000 0.939000

MEAN LANDED WEIGHTS AT AGE
 0.315000 0.393000 0.526000 0.656000 0.939000

MEAN DISCARDED WEIGHTS AT AGE
 0.157000 0.256000 0.313000 0.656000 0.939000

FRACTION MATURE AT AGE
 0.880000 1.000000 1.000000 1.000000 1.000000

FRACTION OF TOTAL MORTALITY BEFORE SPAWNING
IN PREVIOUS YEAR
 0.300000

FRACTION OF TOTAL MORTALITY BEFORE SPAWNING

 43

BY YEAR
 0.416670 0.416670 0.416670 0.416670 0.416670 0.416670 0.416670
0.416670 0.416670 0.416670 0.416670 0.416670

STOCHASTIC RECRUITMENT MODEL
 5

BEVERTON-HOLT WITH LOGNORMAL ERROR MODEL

PARAMETERS A, B, AND RESIDUAL VARIANCE
 32943.605469 10122.372070 0.470113

CONVERSION COEFFICIENTS FOR SSB AND RECRUITMENT
 1000.000 1000.000

SINGLE INITIAL POPULATION SIZE

CONVERSION COEFFICIENT
 1000000.000

INITIAL POPULATION VECTOR
 14.463 1.676 1.843 0.563 0.136

FISHING MORTALITY IN PREVIOUS YEAR
 1.223018

SSB THRESHOLD
 10000000.000

TIME-VARYING PARTIAL RECRUITMENT
PARTIAL RECRUITMENT AT AGE IN PREVIOUS YEAR
 0.100000 0.500000 1.000000 1.000000 1.000000

PARTIAL RECRUITMENT AT AGE IN YEAR: 1
 0.050000 0.350000 1.000000 1.000000 1.000000

PARTIAL RECRUITMENT AT AGE IN YEAR: 2
 0.050000 0.350000 1.000000 1.000000 1.000000

PARTIAL RECRUITMENT AT AGE IN YEAR: 3
 0.050000 0.350000 1.000000 1.000000 1.000000

PARTIAL RECRUITMENT AT AGE IN YEAR: 4
 0.050000 0.350000 1.000000 1.000000 1.000000

 44

PARTIAL RECRUITMENT AT AGE IN YEAR: 5
 0.050000 0.350000 1.000000 1.000000 1.000000

PARTIAL RECRUITMENT AT AGE IN YEAR: 6
 0.050000 0.350000 1.000000 1.000000 1.000000

PARTIAL RECRUITMENT AT AGE IN YEAR: 7
 0.050000 0.350000 1.000000 1.000000 1.000000

PARTIAL RECRUITMENT AT AGE IN YEAR: 8
 0.050000 0.350000 1.000000 1.000000 1.000000

PARTIAL RECRUITMENT AT AGE IN YEAR: 9
 0.050000 0.350000 1.000000 1.000000 1.000000

PARTIAL RECRUITMENT AT AGE IN YEAR: 10
 0.050000 0.350000 1.000000 1.000000 1.000000

PARTIAL RECRUITMENT AT AGE IN YEAR: 11
 0.050000 0.350000 1.000000 1.000000 1.000000

PARTIAL RECRUITMENT AT AGE IN YEAR: 12
 0.050000 0.350000 1.000000 1.000000 1.000000

CONSTANT DISCARD FRACTION AT AGE
 0.583000 0.261000 0.072000 0.000000 0.000000

HARVEST SET BY FISHING MORTALITY
TIME-VARYING FISHING MORTALITY BY YEAR
 1.080000 0.960000 0.840000 0.720000 0.600000 0.600000 0.600000
0.600000 0.600000 0.600000 0.600000 0.600000

SUMMARIZE LANDINGS BY MARKET CATEGORY
NUMBER OF MARKET CATEGORIES
 2

PROPORTION LANDED AT AGE IN CATEGORY: 1
 0.817000 0.692000 0.363000 0.203000 0.000000

PROPORTION LANDED AT AGE IN CATEGORY: 2
 0.183000 0.308000 0.637000 0.797000 1.000000

FILE WITH MARKET CATEGORY DATA

 45

gbyt1.mkt

Output File for Example 2

PROJECTION RUN: flounder_example2
 INPUT FILE: example2
 OUTPUT FILE: example2.out
 RECRUITMENT MODEL: 5
 NUMBER OF SIMULATIONS: 200

 F-BASED PROJECTIONS
 TIME-VARYING F
 YEAR F
1994 1.080
1995 0.960
1996 0.840
1997 0.720
1998 0.600
1999 0.600
2000 0.600
2001 0.600
2002 0.600
2003 0.600
2004 0.600
2005 0.600

 SPAWNING STOCK BIOMASS (THOUSAND MT)
 YEAR AVG SSB (000 MT) STD
1994 4.984 0.024
1995 6.624 2.031
1996 8.489 3.731
1997 10.290 4.866
1998 12.760 5.744
1999 15.268 6.826
2000 17.478 7.596
2001 19.904 8.394
2002 21.667 8.968
2003 23.329 10.424
2004 24.751 10.883
2005 25.816 10.919

 PERCENTILES OF SPAWNING STOCK BIOMASS (000 MT)
 YEAR 1% 5% 10% 25% 50% 75% 90% 95% 99%

 46

1994 4.943 4.948 4.950 4.964 4.982 5.005 5.018 5.022 5.025
1995 4.488 4.752 4.939 5.356 6.021 7.339 8.511 9.736 14.892
1996 4.127 4.481 5.092 6.037 7.822 9.606 12.465 15.353 20.424
1997 3.307 4.620 5.334 7.051 9.100 12.674 16.603 18.391
24.120
1998 4.184 5.870 6.700 8.762 11.841 15.512 19.420 23.498
34.398
1999 4.963 6.794 8.451 11.017 13.609 17.643 24.786 30.410
35.495
2000 5.781 7.817 9.384 12.108 15.987 21.182 27.735 32.892
39.991
2001 7.996 9.361 10.646 13.507 18.215 24.222 31.543 34.770
47.090
2002 7.520 10.331 11.245 15.184 20.633 27.157 33.389 37.740
48.420
2003 8.850 10.971 12.439 15.974 21.384 28.237 35.604 40.755
58.248
2004 10.016 12.140 13.503 16.900 22.529 29.501 38.220 43.174
58.976
2005 10.320 12.082 14.304 17.662 23.697 31.179 39.980 44.991
62.775

 ANNUAL PROBABILITY THAT SSB EXCEEDS THRESHOLD: 10.00000
THOUSAND MT
 YEAR Pr(SSB > Threshold Value)
1994 0.000
1995 0.050
1996 0.215
1997 0.420
1998 0.635
1999 0.795
2000 0.885
2001 0.935
2002 0.955
2003 0.970
2004 0.995
2005 0.995

 RECRUITMENT UNITS ARE: 1000000. FISH
 BIRTH
 YEAR AVG RECRUITMENT STD
1994 9.883 8.113
1995 14.044 11.284
1996 15.361 12.254

 47

1997 18.039 13.663
1998 20.356 16.466
1999 21.711 16.485
2000 25.416 19.779
2001 25.080 17.496
2002 27.320 27.206
2003 28.269 22.100
2004 28.338 18.561
2005 28.572 21.210

 PERCENTILES OF RECRUITMENT UNITS ARE: 1000000. FISH
 BIRTH
 YEAR 1% 5% 10% 25% 50% 75% 90% 95% 99%
1994 1.464 2.535 3.137 4.767 7.550 12.821 17.230 22.654
43.317
1995 1.934 2.777 4.298 7.255 10.757 18.104 25.781 34.297
64.112
1996 2.150 3.657 4.714 7.368 11.171 20.150 30.844 38.752
53.995
1997 2.851 4.978 6.000 9.635 14.184 22.804 34.305 39.712
78.797
1998 3.094 4.358 5.867 10.131 15.622 25.126 37.851 46.504
84.413
1999 2.503 5.418 7.317 10.450 15.730 28.904 43.048 52.423
84.092
2000 3.386 6.568 8.467 11.721 20.153 31.870 47.577 62.248
109.176
2001 3.875 6.954 8.629 12.267 19.316 34.384 48.241 62.435
76.902
2002 3.334 5.301 7.179 11.860 20.626 32.172 56.594 69.405
122.876
2003 5.599 7.312 8.952 12.782 22.136 35.885 49.996 83.145
99.207
2004 3.842 6.715 9.085 14.663 23.165 38.168 55.305 63.093
89.206
2005 4.358 7.381 9.746 14.611 23.285 35.053 53.380 67.096
115.016

 LANDINGS FOR F-BASED PROJECTIONS
 YEAR AVG LANDINGS (000 MT) STD
1994 1.081 0.005
1995 1.459 0.050
1996 2.474 0.441
1997 2.594 1.110

 48

1998 2.980 1.415
1999 3.771 1.753
2000 4.566 2.039
2001 5.268 2.364
2002 5.911 2.533
2003 6.564 2.844
2004 6.995 2.930
2005 7.472 3.593

 PERCENTILES OF LANDINGS (000 MT)
 YEAR 1% 5% 10% 25% 50% 75% 90% 95% 99%
1994 1.072 1.073 1.074 1.077 1.081 1.086 1.088 1.089 1.090
1995 1.395 1.401 1.407 1.426 1.451 1.477 1.509 1.534 1.627
1996 1.994 2.051 2.109 2.193 2.353 2.647 2.866 3.166 4.193
1997 1.277 1.477 1.612 1.883 2.321 3.001 3.695 4.562 6.157
1998 1.049 1.362 1.614 2.086 2.687 3.447 4.588 5.690 7.284
1999 1.153 1.684 1.939 2.571 3.359 4.681 5.790 6.768 8.775
2000 1.493 2.023 2.464 3.276 4.084 5.399 7.127 8.695 10.876
2001 1.869 2.366 2.882 3.702 4.714 5.978 8.204 9.930 12.961
2002 2.297 2.864 3.222 3.960 5.171 7.284 9.331 10.676 12.719
2003 2.220 2.963 3.350 4.530 5.978 8.015 10.014 11.339 16.706
2004 2.489 3.354 3.658 4.832 6.498 8.522 10.764 12.290 16.154
2005 2.987 3.472 3.915 4.971 6.673 8.838 11.546 13.355 17.682

 LANDINGS BY MARKET CATEGORY

 MARKET CATEGORY: 1
 YEAR AVG LANDINGS (000 MT) STD
1994 0.415 0.002
1995 0.765 0.039
1996 1.045 0.306
1997 1.040 0.528
1998 1.088 0.575
1999 1.318 0.651
2000 1.520 0.745
2001 1.695 0.843
2002 1.877 0.923
2003 2.031 0.982
2004 2.131 1.056
2005 2.242 1.249

 MARKET CATEGORY: 1
 YEAR AVG LANDINGS (000 FISH) STD
1994 928.810 4.721

 49

1995 1875.120 121.146
1996 2281.546 787.275
1997 2278.754 1206.816
1998 2366.725 1241.198
1999 2834.620 1396.589
2000 3254.889 1619.958
2001 3611.850 1786.244
2002 4010.157 2000.903
2003 4297.657 2039.298
2004 4513.362 2360.428
2005 4743.807 2590.643

 PERCENTILES OF LANDINGS (000 MT)
 MARKET CATEGORY: 1
 YEAR 1% 5% 10% 25% 50% 75% 90% 95% 99%
1994 0.412 0.412 0.412 0.414 0.415 0.417 0.418 0.418 0.419
1995 0.721 0.725 0.728 0.740 0.756 0.781 0.805 0.830 0.908
1996 0.711 0.757 0.787 0.852 0.959 1.163 1.313 1.533 2.241
1997 0.390 0.491 0.563 0.700 0.934 1.220 1.561 2.037 2.768
1998 0.264 0.413 0.495 0.709 0.942 1.340 1.797 2.135 2.973
1999 0.365 0.540 0.636 0.870 1.157 1.637 2.007 2.524 3.627
2000 0.452 0.612 0.835 1.013 1.364 1.762 2.390 3.017 4.127
2001 0.570 0.716 0.789 1.116 1.507 2.099 2.731 3.228 5.012
2002 0.496 0.762 0.936 1.251 1.632 2.241 3.082 3.527 4.502
2003 0.542 0.771 0.958 1.324 1.843 2.477 3.224 3.908 5.462
2004 0.659 0.916 1.112 1.354 1.898 2.614 3.474 3.886 5.404
2005 0.775 0.947 1.060 1.407 1.884 2.756 3.679 4.172 5.972

 PERCENTILES OF LANDINGS (000 FISH)
 MARKET CATEGORY: 1
 YEAR 1% 5% 10% 25% 50% 75% 90% 95% 99%
1994 920.919 921.805 922.185 924.812 928.430 932.810 935.379 936.042
 936.663
1995 1741.642 1755.352 1766.523 1801.597 1845.567 1915.183 1993.613
2082.715 2334.687
1996 1406.098 1541.898 1607.554 1782.796 2072.607 2573.782 2993.823
3647.390 5323.954
1997 774.332 1000.465 1177.000 1485.790 2034.064 2721.938 3454.620
4567.753 5959.673
1998 565.903 933.153 1127.740 1517.593 2050.550 2968.315 3841.042
4484.551 5887.051
1999 782.870 1156.023 1379.373 1862.583 2508.675 3492.652 4370.167
5312.497 8121.758
2000 993.709 1288.203 1781.391 2220.790 2862.990 3792.414 5352.012

 50

6787.442 8464.320
2001 1219.902 1530.043 1796.679 2375.424 3187.060 4448.634 5893.870
6827.436 10057.199
2002 1018.379 1552.973 1908.710 2664.994 3601.091 4950.250 6327.266
7889.650 10688.919
2003 1210.099 1798.381 2062.266 2752.791 3901.262 5379.981 6876.431
8158.952 10815.159
2004 1417.925 1868.046 2308.837 2917.120 3893.534 5473.977 7398.915
7919.268 10834.707
2005 1634.380 1972.436 2233.185 3061.979 3952.981 5584.436 8112.084
8782.771 13804.104

 MARKET CATEGORY: 2
 YEAR AVG LANDINGS (000 MT) STD
1994 0.666 0.003
1995 0.693 0.012
1996 1.429 0.136
1997 1.554 0.614
1998 1.892 0.873
1999 2.453 1.156
2000 3.046 1.369
2001 3.573 1.604
2002 4.033 1.731
2003 4.533 1.947
2004 4.865 2.018
2005 5.230 2.453

 MARKET CATEGORY: 2
 YEAR AVG LANDINGS (000 FISH) STD
1994 1182.031 5.634
1995 1354.995 32.220
1996 2714.869 344.661
1997 2814.398 1215.545
1998 3255.064 1625.964
1999 4144.996 2012.682
2000 5024.945 2319.645
2001 5815.103 2725.366
2002 6501.709 2893.114
2003 7267.254 3282.735
2004 7729.674 3293.217
2005 8259.064 4174.600

 PERCENTILES OF LANDINGS (000 MT)
 MARKET CATEGORY: 2

 51

 YEAR 1% 5% 10% 25% 50% 75% 90% 95% 99%
1994 0.661 0.661 0.661 0.663 0.666 0.669 0.670 0.671 0.671
1995 0.673 0.676 0.679 0.685 0.692 0.701 0.708 0.714 0.729
1996 1.281 1.300 1.311 1.342 1.393 1.474 1.567 1.660 1.952
1997 0.845 0.969 1.019 1.170 1.402 1.781 2.108 2.704 3.871
1998 0.786 0.944 1.088 1.324 1.701 2.225 2.795 3.448 4.727
1999 0.748 1.086 1.308 1.654 2.167 2.979 3.766 4.449 5.558
2000 0.986 1.424 1.584 2.143 2.799 3.576 4.721 5.662 8.255
2001 1.153 1.500 1.988 2.557 3.166 4.062 5.699 7.035 8.466
2002 1.457 1.949 2.169 2.736 3.590 4.849 6.370 7.270 8.801
2003 1.678 2.002 2.313 3.181 4.205 5.491 6.887 7.951 11.361
2004 1.812 2.277 2.608 3.361 4.600 6.003 7.291 8.611 10.657
2005 2.106 2.378 2.734 3.513 4.814 6.299 8.008 9.054 12.463

 PERCENTILES OF LANDINGS (000 FISH)
 MARKET CATEGORY: 2
 YEAR 1% 5% 10% 25% 50% 75% 90% 95% 99%
1994 1172.612 1173.671 1174.124 1177.260 1181.579 1186.806 1189.871
1190.662 1191.402
1995 1307.858 1311.904 1318.807 1332.866 1351.122 1368.344 1391.374
1404.760 1452.184
1996 2344.650 2385.210 2423.289 2496.917 2618.715 2840.517 3037.254
3276.493 4054.676
1997 1393.093 1627.636 1748.561 2046.781 2474.882 3270.554 3961.915
4894.660 7193.100
1998 1150.842 1477.036 1751.530 2213.630 2842.441 3872.901 4988.354
5995.794 8649.986
1999 1195.424 1766.058 2114.143 2739.261 3689.791 5068.554 6369.315
7653.857 9882.696
2000 1573.030 2192.861 2619.840 3641.898 4552.136 5988.616 7988.431
9640.032 12125.054
2001 1957.227 2485.358 3159.452 4031.572 5149.951 6576.400 9495.153
11104.000 14445.570
2002 2399.965 3166.341 3452.076 4407.873 5630.470 7952.853 10495.607
12027.401 14900.667
2003 2395.094 3205.840 3618.477 4929.368 6709.939 8924.874 11324.120
13063.751 19303.770
2004 2615.740 3619.944 4059.289 5195.565 7150.291 9628.668 12126.825
13621.478 17282.914
2005 3192.201 3780.631 4188.291 5452.376 7303.525 9722.280 13299.742
14215.151 19107.678

 DISCARDS FOR F-BASED PROJECTIONS
 YEAR AVG DISCARDS (000 MT) STD

 52

1994 0.121 0.001
1995 0.246 0.032
1996 0.245 0.111
1997 0.244 0.141
1998 0.249 0.132
1999 0.290 0.148
2000 0.328 0.175
2001 0.361 0.185
2002 0.401 0.213
2003 0.421 0.201
2004 0.442 0.268
2005 0.463 0.252

 PERCENTILES OF DISCARDS (000 MT)
 YEAR 1% 5% 10% 25% 50% 75% 90% 95% 99%
1994 0.119 0.120 0.120 0.120 0.121 0.121 0.121 0.122 0.122
1995 0.211 0.216 0.219 0.226 0.236 0.256 0.275 0.295 0.372
1996 0.116 0.138 0.148 0.175 0.218 0.289 0.358 0.427 0.639
1997 0.062 0.092 0.110 0.155 0.213 0.298 0.398 0.486 0.711
1998 0.066 0.091 0.117 0.153 0.219 0.317 0.394 0.481 0.641
1999 0.080 0.118 0.130 0.192 0.257 0.348 0.469 0.555 0.775
2000 0.107 0.123 0.155 0.214 0.284 0.393 0.553 0.624 0.898
2001 0.109 0.146 0.185 0.233 0.306 0.454 0.595 0.703 0.962
2002 0.101 0.154 0.183 0.261 0.358 0.479 0.673 0.794 1.116
2003 0.113 0.184 0.203 0.265 0.372 0.556 0.713 0.797 0.954
2004 0.156 0.187 0.205 0.277 0.376 0.546 0.744 0.844 1.260
2005 0.146 0.197 0.220 0.291 0.392 0.560 0.782 0.935 1.388

Example 3 (example based on AGEPRO version 1.21)

The third example is taken from a hypothetical projection analysis for cod. This
example illustrates a projection with age-1 recruitment, R/SSB constraints on realized
recruitment, time-varying quotas, and stochastic natural mortality. The projection begins in
1994 with a time horizon of 5 years. There are 5 simulations performed for each of 200
initial population vectors. The recruitment age is age-1 and harvest is quota-based and
time-varying. Realized SSB levels are compared to a threshold and natural mortality is
random. The stock-recruitment model is Beverton-Holt with lognormal error and R/SSB
constraints are applied to realized recruitments. Below are the list and output files for
example 3.

List of Input File for Example 3

TITLE OF THE PROJECTION RUN
cod_example3

 53

FIRST YEAR OF THE PROJECTION RUN
 1994

LENGTH OF THE TIME HORIZON
 7

NUMBER OF SIMULATIONS PER INITIAL POPULATION SIZE
 5

POSITIVE SEED FOR RANDOM NUMBER GENERATION
 53422

AGE OF RECRUITMENT
RECRUITMENT AT AGE-1

MIXED HARVEST STRATEGY
NO MIXTURE OF FISHING MORTALITIES AND QUOTAS

DISCARDS
DISCARDS AT AGE NOT INCLUDED

TYPE OF HARVEST
HARVEST SET BY QUOTA

HARVEST STRATEGY
TIME-VARYING

TARGET F
TARGET F IS NOT INCLUDED

SURVEY CATCH-AT-AGE INDEX
NO SURVEY INDEX IS PREDICTED

SSB THRESHOLD
SSB IS COMPARED TO THRESHOLD

LANDINGS BY MARKET CATEGORY
LANDINGS ARE NOT SUMMARIZED BY CATEGORY

FRACTION OF TOTAL MORTALITY PRIOR TO SPAWNING
CONSTANT IN TIME

PARTIAL RECRUITMENT

 54

TIME-VARYING

DISCARD FRACTION AT AGE
CONSTANT IN TIME

BOUNDED RECRUITMENT
R/SSB CONSTRAINTS ARE USED

NATURAL MORTALITY
NATURAL MORTALITY IS A RANDOM VARIABLE

INITIAL POPULATION SIZE
DISTRIBUTION OF INITIAL POPULATION SIZES

NUMBER OF AGE CLASSES
 10

LOWER AND UPPER BOUND FOR RANDOM NATURAL MORTALITY
 0.180000 0.220000

MEAN WEIGHTS AT AGE
 0.777000 1.231000 1.965000 2.931000 4.194000 5.528000 6.956000
8.913000 10.701000 15.224000

MEAN LANDED WEIGHTS AT AGE
 0.991000 1.566000 2.432000 3.530000 4.833000 6.190000 7.721000
10.058000 11.006000 15.224000

FRACTION MATURE AT AGE
 0.230000 0.640000 0.910000 0.980000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000

FRACTION OF TOTAL MORTALITY BEFORE SPAWNING
 0.167000

STOCHASTIC RECRUITMENT MODEL
 5

BEVERTON-HOLT WITH LOGNORMAL ERROR MODEL

PARAMETERS A, B, AND RESIDUAL VARIANCE
 36189.488281 96182.343750 0.426757

CONVERSION COEFFICIENTS FOR SSB AND RECRUITMENT

 55

 1000.000 1000.000

R/SSB CONSTRAINTS
ENDPOINTS OF R/SSB INTERVALS
L(HIGH) L(LOW) U(LOW) U(HIGH)
 0.085964 0.107112 0.446253 0.772535

CUTOFF LEVEL OF SSB
 37177000.000

DISTRIBUTION OF INITIAL POPULATION SIZE

NUMBER OF INITIAL POPULATION VECTORS
 200

FILE WITH INITIAL POPULATION VECTORS
gbcd94n1.dat

CONVERSION COEFFICIENT
 1000.000

SSB THRESHOLD
 70000000.000

TIME-VARYING PARTIAL RECRUITMENT
PARTIAL RECRUITMENT AT AGE IN YEAR: 1
 0.002700 0.334000 0.820900 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000

PARTIAL RECRUITMENT AT AGE IN YEAR: 2
 0.000000 0.250000 0.750000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000

PARTIAL RECRUITMENT AT AGE IN YEAR: 3
 0.000000 0.250000 0.750000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000

PARTIAL RECRUITMENT AT AGE IN YEAR: 4
 0.000000 0.250000 0.750000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000

PARTIAL RECRUITMENT AT AGE IN YEAR: 5
 0.000000 0.250000 0.750000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000

 56

PARTIAL RECRUITMENT AT AGE IN YEAR: 6
 0.000000 0.250000 0.750000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000

PARTIAL RECRUITMENT AT AGE IN YEAR: 7
 0.000000 0.250000 0.750000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000

HARVEST SET BY QUOTA
TIME-VARYING QUOTA BY YEAR
 5000000.000 5000000.000 5000000.000 10000000.000 10000000.000
10000000.000 10000000.000

Output File for Example 3

PROJECTION RUN: cod_example3
 INPUT FILE: example3
 OUTPUT FILE: example3.out
 RECRUITMENT MODEL: 5
 NUMBER OF SIMULATIONS: 5

 QUOTA-BASED PROJECTIONS
 TIME-VARYING QUOTA
 YEAR QUOTA (000 MT)
1994 5.000
1995 5.000
1996 5.000
1997 10.000
1998 10.000
1999 10.000
2000 10.000

 SPAWNING STOCK BIOMASS (THOUSAND MT)
 YEAR AVG SSB (000 MT) STD
1994 32.490 5.001
1995 38.894 6.583
1996 46.777 9.164
1997 56.990 13.484
1998 67.289 19.383
1999 81.083 26.456
2000 100.256 35.458

 57

 PERCENTILES OF SPAWNING STOCK BIOMASS (000 MT)
 YEAR 1% 5% 10% 25% 50% 75% 90% 95% 99%
1994 21.863 24.675 26.115 28.568 32.646 35.619 38.783 41.079
43.769
1995 24.714 28.184 30.989 33.945 38.807 42.878 48.178 50.214
54.906
1996 28.061 32.673 35.675 40.005 46.553 52.123 59.216 62.703
71.654
1997 32.234 37.859 41.328 47.041 55.601 64.901 74.592 80.787
96.295
1998 32.888 39.864 44.932 53.174 64.798 77.879 93.329 102.387
122.748
1999 33.802 44.118 50.886 61.398 78.204 96.175 117.682 127.987
159.003
2000 34.108 50.692 58.981 73.949 96.228 120.971 147.508 165.768
202.163

 ANNUAL PROBABILITY THAT SSB EXCEEDS THRESHOLD: 70.00000
THOUSAND MT
 YEAR Pr(SSB > Threshold Value)
1994 0.000
1995 0.000
1996 0.013
1997 0.156
1998 0.401
1999 0.614
2000 0.800

 RECRUITMENT UNITS ARE: 1000.000 FISH
 BIRTH
 YEAR AVG RECRUITMENT STD
1994 8479.810 4097.519
1995 11167.114 6464.247
1996 13329.513 7491.100
1997 15758.157 8593.025
1998 17352.559 10449.576
1999 20740.891 12883.358
2000 23986.729 15431.147

 PERCENTILES OF RECRUITMENT UNITS ARE: 1000.000 FISH
 BIRTH
 YEAR 1% 5% 10% 25% 50% 75% 90% 95% 99%
1994 3299.313 3751.782 4227.998 5473.120 7788.413 10414.050 13164.822
14973.680 24230.043

 58

1995 3582.582 4263.283 4875.409 6496.478 9377.364 13562.734 20206.299
25353.598 31714.213
1996 3866.110 4752.905 5686.021 7608.120 11397.204 17577.119 23908.340
29098.461 36232.441
1997 4149.721 5601.578 6705.627 9336.188 13790.227 20449.178 27686.070
32854.441 43419.004
1998 4551.344 6047.147 7046.784 9931.970 14542.737 22495.221 31103.816
38594.492 52006.809
1999 4778.529 7001.829 8450.063 11541.086 17323.795 25926.600 38662.137
46656.734 63886.934
2000 5180.117 8155.035 9748.943 13452.345 19905.979 29559.148 43917.047
53635.949 76669.703

 REALIZED F SERIES FOR QUOTA-BASED PROJECTIONS
 YEAR AVG F STD
1994 0.162 0.029
1995 0.143 0.027
1996 0.123 0.025
1997 0.212 0.053
1998 0.184 0.061
1999 0.157 0.069
2000 0.130 0.092

 PERCENTILES OF REALIZED F SERIES
 YEAR 1% 5% 10% 25% 50% 75% 90% 95% 99%
1994 0.112 0.121 0.130 0.141 0.156 0.180 0.199 0.216 0.249
1995 0.098 0.105 0.111 0.124 0.138 0.160 0.177 0.192 0.224
1996 0.078 0.088 0.093 0.105 0.118 0.137 0.153 0.169 0.200
1997 0.115 0.140 0.153 0.177 0.204 0.241 0.278 0.309 0.374
1998 0.086 0.107 0.118 0.143 0.174 0.215 0.259 0.286 0.366
1999 0.067 0.084 0.093 0.115 0.144 0.186 0.231 0.266 0.343
2000 0.052 0.065 0.072 0.090 0.115 0.152 0.192 0.229 0.339

 59

References

Brodziak, J. and P. Rago. Unpublished manuscript 1994. A general approach for short-

term stochastic projections in age-structured fisheries assessment models.
Population Dynamics Branch. Northeast Fisheries Science Center. Woods Hole,
Massachusetts, 02543.

Brodziak, J., P. Rago, and R. Conser. 1998. A general approach for making short-term

stochastic projections from an age-structured fisheries assessment model. In F.
Funk, T. Quinn II, J. Heifetz, J. Ianelli, J. Powers, J. Schweigert, P. Sullivan, and
C.-I. Zhang (Eds.), Proceedings of the International Symposium on Fishery Stock
Assessment Models for the 21st Century. Alaska Sea Grant College Program, Univ.
of Alaska, Fairbanks.

Metcalf, M. 1985. Effective Fortran 77. Oxford University Press, Oxford, U.K., 231 p.

Metcalf, M., and J. Reid. 1998. Fortran 90/95 Explained. Oxford University Press,

Oxford, U.K., 333 p.

Northeast Fisheries Science Center [NEFSC]. 1994. Report of the 18th Northeast

Regional Stock Assessment Workshop: Stock Assessment Review Committee
Consensus Summary of Assessments. NEFSC Ref. Doc. 94-22, Woods Hole, MA
02543, 199 p.

Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. 1992. Numerical

recipes in Fortran: The art of scientific computing, 2nd Edition. Cambridge
University Press, Cambridge, U.K., 963 p.

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish

populations. Bulletin of the Fisheries Research Board of Canada. Bulletin 191.
Fisheries and Marine Service, Ottawa, Canada, 382 p.

 60

Table 1. Notation for variables used in the AGEPRO model.

Variable Description

Na(t) The number of age-a fish at the beginning of year t.
Ca(t) The number of age-a fish that are captured and die in year t.
Fa(t) The instantaneous fishing mortality rate applied to age-a fish in year t.
F(t) The instantaneous fully-recruited fishing mortality rate in year t.
Fwb(t) The instantaneous fishing mortality weighted by mean biomass in year t.
PRa(t) The partial recruitment to F(t) for age-a fish (age-specific selectivity).
M(t) The instantaneous natural mortality rate in year t.
ZPROJ(t) The fraction of total annual mortality that occurs from January 1st to the
 midpoint of the spawning season in year t.
FMa The average fraction of age-a fish that are mature.
WS, a The average spawning weight of an age-a fish.
SSB(t) The total biomass of mature spawning fish measured at the midpoint of

the spawning season.
MB(t) The mean stock biomass in year t.
TSB(t) The total stock biomass on January 1st of year t.
WL, a The average weight of an age-a fish that is landed.
WD, a The average weight of an age-a fish that is discarded.
DFa(t) The fraction of age-a fish that are discarded and die in year t.
L(t) The total weight of landed fish in year t.
D(t) The total weight of fish that are discarded and die in year t.
Q(t) The landings quota in year t.

 61

Table 2. Summary of logical flags for the AGEPRO version 2.0 software ordered by their
position (line number) within an input file.

Position Logical Flag Description

 6 Age-2 Recruitment If true, recruitment age is age-2. Otherwise
recruitment age is age-1.

 7 Harvest Mixture If true, a mixture of F-based and quota-based
harvest can be specified in the projection.
Otherwise, harvest is either F-based or it is quota-based.

 8 Discard If true, discards at age are incorporated in the
projection. Otherwise, there are no discards.

 9 Quota-based If true, catches are based on quotas. Otherwise,
catches are based on fishing mortality rates.

 10 Constant Harvest If true, the harvest strategy is constant in time.
Otherwise, quotas or F=s can Strategy vary in time.

 11 F target If true, a target value of F is applied in any
year following a year in which the SSB threshold is reached. Otherwise, F does not change
after the threshold is reached.

 12 Index If true, the value of an age-specific recruitment index
is predicted. Otherwise, no prediction is made.

 13 SFA Threshold If true, the realized SSB, TSB, MB, F, and Fwb are

compared to their threshold. Otherwise, no comparisons are made.

 14 Market Category If true, landings are summarized by market category
and output to file. Otherwise, no market category summaries are made.

 15 Total Mortality If true, the fraction of total mortality that occurs prior
to spawning can vary in time. Otherwise, the fraction is constant.

 16 Partial Recruitment If true, the partial recruitment to fishing mortality at
age vector can vary in time. Otherwise, the partial recruitment vector is constant.

 17 Constant Discard If true, discard proportions at age are constant.
Otherwise, the discard proportion at age can vary in time.

 62

 18 Bounded Recruitment If true, realized recruitment from recruitment models
with lognormal error terms is constrained based on R/SSB ratios. Otherwise, no constraints
are applied to recruitment.

 19 Constant Natural If true, natural mortality is constant in time.
Otherwise, it varies stochastically Mortality and is a uniformly distributed random
variable.

 20 Bootstrap If true, a file of bootstrapped initial
population vectors is used for the projection analysis. Otherwise, a single initial population
vector is used.

 63

Table 3. Structure of an input file. Values on a single line can delimited by a comma or a space.

 Is input required?

Input # Description
 1 Name of projection run, input: up to 64 character string Yes

 2 First year of projection run, input: 4-digit year (Positive integer) Yes

 3 Length of planning horizon, input: Y (Positive integer) Yes

 4 Number of simulations per initial population vector, input: Positive integer Yes

 5 Number of Awarmups@ for random number generator, input: Positive integer Yes

 6 Age-2 recruitment flag, input: Integer (1=true; 0=false) Yes

 7 Harvest mixture flag, input: Integer (1=true; 0=false) Yes

 8 Discard flag, input: Integer (1=true; 0=false) Yes

 9 Quota-based flag, input: Integer (1=true; 0=false) Yes

 10 Constant harvest strategy flag, input: Integer (1=true; 0=false) Yes

 11 F target flag, input: Integer (1=true; 0=false) Yes

 12 Index flag, input: Integer (1=true; 0=false) Yes

 13 SFA threshold flag, input: Integer (1=true; 0=false) Yes

 14 Market category flag, input: Integer (1=true; 0=false) Yes

 15 Total mortality flag, input: Integer (1=true; 0=false) Yes

 16 Partial recruitment flag, input: Integer (1=true; 0=false) Yes

 17 Constant discard flag, input: Integer (1=true; 0=false) Yes

 18 Bounded recruitment flag, input: Integer (1=true; 0=false) Yes

 19 Constant natural mortality flag, input: Integer (1=true; 0=false) Yes

 64

 20 Bootstrap flag, input: Integer (1=true; 0=false) Yes

 21 Number of ageclasses, lower and upper bound on range Yes

 of ages for computing mean biomass, input: A, Lowerage,Upperage

 22 Natural mortality rate Yes;
 form depends on input

If input #19=true, then input: M#19 and input #6
If input #19=false and input #6=false, then input: LM , UM
If input #19=false and input #6=true, then input: LM , UM
 and on the next line input: M(0)

 23 Mean spawning weights at age, input: WS , 1 , WS ,2 ,WS ,3 ,... , WS , A Yes

 24 Mean landed weights at age, input: WL , 1 , WL ,2 ,WL ,3 ,... , WL , A Yes

 25 Mean discarded weights at age, input: WD , 1 , WD ,2 ,WD ,3 ,... , WD , A
 No; required if input #8= true

 26 Fraction mature at age, input: FM1 , FM2 , FM3 ,... , FMA Yes

 Table 3. Continued.
Input # Description Is input required?
27 Fraction of total mortality that occurs before spawning Yes; depends on input #15

28 If input #15=false, then input: ZPROJ

and input #6
If input #15=true and input #6=false, input: ZPROJ(1) , ZPROJ(2) , ..., ZPROJ(Y)
If input #15=true and input #6=true, input: ZPROJ(0)
 and on the next line input: ZPROJ(1) , ZPROJ(2) , ..., ZPROJ(Y)

28 Recruitment flag, input: Integer (between 1 and 15) Yes

29 Recruitment model parameters Yes;

depends on input #28
If input #28=1, input: K
 and on the next line input: NR , 1 , NR , 2 , NR ,3 , ..., NR , K
 and on the next line input: J
 and on the next line input: SSB2 , SSB3 , SSB4 , ..., SSBJ
 and on the next J lines input: p1 , 1 , p1 , 2 , p1 , 3 , ..., p1 , K

 p2 , 1 , p2 , 2 , p2 , 3 , ..., p2 , K

 65

 ...
 pJ , 1 , pJ , 2 , pJ , 3 , ..., pJ , K

If input #28=2, input: T
 and on the next line input: NR(1) , NR(2) , NR(3) , ..., NR(T)
 and on the next line input: SSB(1-R) , SSB(2-R) , SSB(3-R) , ..., SSB(T-R)
If input #28=3, input: T
 and on the next line input: NR(1) , NR(2) , NR(3) , ..., NR(T)
If input #28=4, input: TLOW , THIGH
 and on the next line input: SSB*
 and on the next line the LOW-SSB STATE RECRUITMENTS: NR(1) , NR(2) , NR(3) ,

..., NR(TLOW)
 and on the next line the LOW-SSB STATE SSBs: SSB(1-R) , SSB(2-R) , SSB(3-R) ,

..., SSB(TLOW-R)
 and on the next line the HIGH-SSB STATE RECRUITMENTS: NR(1) , NR(2) , NR(3) ,

..., NR(THIGH)
 and on the next line the HIGH-SSB STATE SSBs: SSB(1-R) , SSB(2-R) , SSB(3-R) ,

..., SSB(THIGH-R)
If input #28=5, input: a , b , σw

2
 and on the next line input: cSSB , cR
If input #28=6, input: a , b , σw

2
 and on the next line input: cSSB , cR
If input #28=7, input: a , b, k , σw

2
 and on the next line input: cSSB , cR
If input #28=8, input: μlogR and σlogR
 and on the next line input: cSSB , cR
If input #28=9, input: T
 and on the next line input: NR(1,1) , NR(1,2) , NR(1,3) , ..., NR(1,T)
 and on the next line input: NR(2,1) , NR(2,2) , NR(2,3) , ..., NR(2,T)

 ...
 and on the next line input: NR(Y,1) , NR(Y,2) , NR(Y,3) , ..., NR(Y,T)
If input #28=10, input: a , b , σw

2
 and on the next line input: φ , last_log-scale_recruitment residual from stock-
recruitment curve fit

 and on the next line input: cSSB , cR
If input #28=11, input: a , b , σw

2
 and on the next line input: φ , last_log-scale_recruitment residual from stock-
recruitment curve fit

 and on the next line input: cSSB , cR
If input #28=12, input: a , b , k, σw

2
 and on the next line input: φ , last_log-scale_recruitment residual from stock-
recruitment curve fit

 and on the next line input: cSSB , cR
If input #28=13, input: μlogR and σlogR

 and on the next line input: φ , last_log-scale_recruitment residual from stock-

 66

recruitment curve fit
 and on the next line input: cSSB , cR
If input #28=14, input: T
 and on the next line input: NR(1) , NR(2) , NR(3) , ..., NR(T)
If input #28=15, input: TLOW , THIGH
 and on the next line input: SSB*
 and on the next line the LOW-SSB STATE RECRUITMENTS: NR(1) , NR(2) , NR(3) ,

..., NR(TLOW)
 and on the next line the HIGH-SSB STATE RECRUITMENTS: NR(1) , NR(2) , NR(3) ,

..., NR(THIGH)

Table 3. Continued

Input # Description Is input required?

30 R/SSB constraints, input: LHIGH , LLOW , ULOW , UHIGH
 No; required if input #18=true

and on the next line input: SSBCUT and input #28 = 5, 6, 7, or 8

31 Initial population abundance parameters Yes;
depends on input #6 and If input #6=false and input #20=true, input: B
 input #20

 and on the next line input: NAME OF FILE WITH A TOTAL OF B
BOOTSTRAPPED n(1)s

 and on the next line input: cN
If input #6=false and input #20=false, input: cN
 and on the next line input: n1(t) , n2(t) , n3(t) , ..., nA(t)
If input #6=true and input #20=true, input: B
 and on the next line input: NAME OF FILE WITH A TOTAL OF B

BOOTSTRAPPED n(1)s
 and on the next line input: cN
 and on the next line input: NAME OF FILE WITH A TOTAL OF B

BOOTSTRAPPED F(0)s
If input #6=true and input #20=false, input: cN
 and on the next line input: n1(t) , n2(t) , n3(t) , ..., nA(t)
 and on the next line input: F(0)

 32 Survey catch-at-age index parameters, input: p No;
required if input #12=true

 and on the next line input: sp*
 and on the next line input: β0 , β1

33 SFA thresholds, input: SSBTHRESHOLD ,TSBTHRESHOLD, FTHRESHOLD, MBTHRESHOLD,

FwbTHRESHOLD No;

 67

required if input
#13=true

34 F target parameters, input: FTARGET No; required
if input #11=true

 and on the next line input: YTARGET

35 Fishery selectivity parameters Yes;
depends on input #6 and

If input #6=true and input #16=true, input: PR2(0) , PR3(0) , ... , PRA(0)
 input #16

 and on the next Y lines input: PR2(1) , PR3(1) , ... , PRA(1)
 PR2(2) , PR3(2) , ... , PRA(2)
 ...
 PR2(Y) , PR3(Y) , ... , PRA(Y)

If input #6=false and input #16=true, on the next Y lines input: PR1(1) , PR2(1) , ... ,
PRA(1)

 PR1(2) , PR2(2) , ... , PRA(2)
 ...
 PR1(Y) , PR2(Y) , ... , PRA(Y)

If input #6=true and input #16=false, input: PR2 , PR3 , ... , PRA
If input #6=false and input #16=false, input: PR1 , PR2 , ... , PRA

36 Discard parameters No; required if input #8=true

 If input #17=true, input: DF1 , DF2 , ... , DFA
 and depends on input #17
If input #17=false, on the next Y lines input: DF1(1) ,DF2(1) , ... , DFA(1)

 DF1(2) , DF2(2) , ... , DFA(2)
 ...
 DF1(Y) , DF2(Y) , ... , DFA(Y)

 37 Harvest strategy parameters Yes; depends
on input #7,

 If input #7=false, input #9=true, and input #10=true, input: Q
 input #9, and input #10

 If input #7=false, input #9=true, and input #10=false, input: Q(1) , Q(2) , Q(3) , ... ,
Q(Y)

 If input #7=false, input #9=false, and input #10=true, input: F
 If input #7=false, input #9=false, and input #10=false, input: F(1) , F(2) , F(3) , ... ,

F(Y)
 If input #7=true, input: I(1) , I(2) , I(3) , ... , I(Y)
 where I(year)=1 for a quota-based harvest and I(year)=0 for an F-based harvest in a

given year
 and on the next line input: Q(1) , Q(2) , Q(3) , ... , Q(Y) with dummy values for F-

 68

based years
 and on the next line input: F(1) , F(2) , F(3) , ... , F(Y) with dummy values for quota-

based years

 71

Table 3. Continued.

Input # Description Is input required?

38 Market category parameters, input: MC (integer between 1 and 3)
 No; required if input #14=true

 and on the next MC lines input: q1 , 1 , q2 ,1 , q 3,1 , ..., q A, 1
 q1, 2 , q2 , 2 , q3 ,2 , ..., qA ,2 (If necessary)
 q1 ,3 , q2 ,3 , q3 , 3 , ..., qA , 3 (If necessary)

 and on the next line input: NAME OF OUTPUT FILE FOR MARKET CATEGORY
DATA

Appendix 1.

 Application of Newton's method to solve for F

Let g(F) = L(F) - Q where L(F) is defined in Eq. 10. The first order Taylor series expansion of
g(F) about a real number x0[0,4) results in

Since g(F) = 0, we obtain

The iterative solution for F can be obtained by successively substituting values of F into
Equation 40 such that

The function g'(F) is the first derivative of L(F) - Q with respect to F and can be expressed as
g'(F) = L'(F) - 0 or

g(F) = g(x)+gN(x)(F_x)

F = x _
g(x)

gN(x)

F(n+1) = F(n) _
g(F(n))

gN(F(n))

LN(F) =
A
j

a=1
(1_DFa) WL,a C

N
a (F)

 72

The derivative of catch with respect to F can be derived by taking the derivative of F with
respect to C in Equation 5. After some algebra the derivative g'(F) reduces to

Therefore, the iterative solution for F that results in catch of the quota Q can be found from
The subroutine rtsafe() of Press et al. (1992) is used to ensure convergence of the iterates F(n) to
a solution of g(F)=0. This subroutine forces the iterates F(n) to remain within a prescribed
interval when a Newton iteration would fall outside an interval of feasible solutions. In this
application the interval of feasible solutions for g(F)=0 is [0, 25] and iteration stops when *
F(n+1) - F(n) * < 0.0005 .

Definition of Infeasible Quotas

An infeasible quota Q occurs when the desired catch cannot be removed from the population for
the maximum feasible level of fishing mortality, denoted by F*. In theory the maximum level of
F could be infinite, however, we choose to use a realistic upper bound on F* rather than to
assume that infinite fishing mortality could be applied to a commercially exploited marine fish
stock. In particular, we assume the maximum feasible level of F is F*=25.0 . Given this choice
of F* and assuming that M=0.2, it follows that the survival probability of a recruited animal
would be e-Z = e-25.2 . 1.13705@10-11, or roughly 1 chance in 100 billion. This survival
probability was considered to be small enough to characterize the possible effects of fishing

mortality on a stock. The maximum landings in time period t, denoted by L*, are then given by

Appendix 2.

gN(F) =

A
j

a=1
(1 _ DFa) WL,a

PRa Na
(M + PRa F)2

 C

x

⎣⎢
⎡

⎦⎥
⎤M + (M CPRa F _ M + PR

2
a F2) e_M _ PRa F

F(n+1) = F(n) _
L(F(n))_Q
gN(F(n))

L*(F*) =
A
j

a=1
[]1-DFa(t) WL,a

PRa(t) F*

M(t)+PRa(t) F* ⎩⎨
⎧

⎭⎬
⎫

1-e-[M(t)+PRa(t) F*] Na(t)

 73

Source code for agepro_v2.02.f90

 module global_arrays

!c REVISED JUL-2002

integer*4 nage
integer*4 maxboot, maxsim, maxtime, maxlen
integer*4 ttime

logical discflag, allfeasible

real*8 m, quota, tmpF
real*8 p_feasible
real*8, allocatable :: n(:),pr(:),wtland(:),discfrac(:)

!c REVISED FEB-2002

parameter(maxobsrec=100,maxpct=9, maxage=50, maxmc=3)

integer*4,allocatable :: mixyr(:)
logical,allocatable :: feasible(:,:)

real*8 catch(1:maxage)

real*8, allocatable :: var_pr(:,:),maxcatch(:)
real*8, allocatable :: var_discfrac(:,:)

real*8, allocatable :: resid(:)
real*8, allocatable :: var_zproj(:)
real*8, allocatable :: boot_n(:,:)
real*8, allocatable :: boot_f(:)

real*8, allocatable :: fseries(:),qseries(:)
real*8, allocatable :: simssb(:,:,:)

!c REVISED 7/1/99

real*8, allocatable :: simmeanB(:,:,:)

!c REVISED FEB-2002

real*8, allocatable :: simtotB(:,:,:)
real*8, allocatable :: simland(:,:,:)
real*8, allocatable :: simdisc(:,:,:)
real*8, allocatable :: simf(:,:,:)
real*8, allocatable :: simrecr(:,:,:)

 74

real*8, allocatable :: simsvind(:,:,:)
real*8, allocatable :: avgssb(:),avgland(:),avgsvind(:)
real*8, allocatable :: avgdisc(:),avgf(:),avgrecr(:)

!c REVISED 7/1/99
 real*8, allocatable :: avgmeanB(:),sdmeanB(:)
!c REVISED FEB-2002
 real*8, allocatable :: avgtotB(:),sdtotB(:)

real*8, allocatable :: sdssb(:),sdland(:),sdsvind(:)
real*8, allocatable :: sddisc(:),sdf(:),sdrecr(:)
real*8, allocatable :: pctssb(:,:),pctdisc(:,:)

!c REVISED 7/1/99

real*8, allocatable :: pctmeanB(:,:)
real*8, allocatable :: pcttotB(:,:)
real*8, allocatable :: pctland(:,:),pctf(:,:)
real*8, allocatable :: pctrecr(:,:),pctsvind(:,:)
real*8, allocatable :: crit_count(:),p_index(:)
real*8, allocatable :: ssb_count(:),p_ssbthresh(:)

!c REVISED JUL-2002
 real*8, allocatable :: pjoint_ssbthresh(:)
 real*8, allocatable :: pjoint_meanBthresh(:)
 real*8, allocatable :: pjoint_totBthresh(:)
 real*8, allocatable :: pjoint_FmeanBthresh(:)
 real*8, allocatable :: pjoint_Fthresh(:)
 real*8, allocatable :: pjoint_index(:)

!c REVISED 7/8/99

real*8, allocatable :: meanB_count(:),p_meanBthresh(:)
real*8, allocatable :: FmeanB_count(:),p_FmeanBthresh(:)

!c REVISED FEB-2002

real*8, allocatable :: totB_count(:),p_totBthresh(:)
real*8, allocatable :: F_count(:),p_Fthresh(:)

 real*8, allocatable :: simFmeanB(:,:,:),avgFmeanB(:)
 real*8, allocatable :: sdFmeanB(:),pctFmeanB(:,:)

real*8, allocatable :: market(:,:)
 real*8, allocatable :: simmc1_w(:,:,:)

real*8, allocatable :: simmc1_n(:,:,:)
real*8, allocatable :: simmc2_w(:,:,:)
real*8, allocatable :: simmc2_n(:,:,:)
real*8, allocatable :: simmc3_w(:,:,:)

 75

real*8, allocatable :: simmc3_n(:,:,:)
real*8, allocatable :: avgmc1_w(:)
real*8, allocatable :: avgmc1_n(:)
real*8, allocatable :: avgmc2_w(:)
real*8, allocatable :: avgmc2_n(:)
real*8, allocatable :: avgmc3_w(:)
real*8, allocatable :: avgmc3_n(:)
real*8, allocatable :: sdmc1_w(:)
real*8, allocatable :: sdmc1_n(:)
real*8, allocatable :: sdmc2_w(:)
real*8, allocatable :: sdmc2_n(:)
real*8, allocatable :: sdmc3_w(:)
real*8, allocatable :: sdmc3_n(:)
real*8, allocatable :: pctmc1_w(:,:)
real*8, allocatable :: pctmc1_n(:,:)
real*8, allocatable :: pctmc2_w(:,:)
real*8, allocatable :: pctmc2_n(:,:)
real*8, allocatable :: pctmc3_w(:,:)
real*8, allocatable :: pctmc3_n(:,:)
real*8, allocatable :: obsrec3(:,:)

end

 program agepro_v2_02

!ccc
!!c agepro_v2.02.f90 performs medium-term projections
!!c for an exploited, age-structured population
!!c by jon brodziak
!!c nmfs/nefsc/woods hole laboratory
!!c version 2.02 23-JUL-2002
!!c double precision and F90 conversion by laura shulman
!ccc

!ccc
!!c VARIABLE DECLARATIONS
!ccc

 use global_arrays

 real*8 ftol,fmin,fmax
 parameter (maxrec=20, maxssb=10)
 parameter (ftol=0.0005, fmin=0.0000, fmax=25.0)

 76

!c REVISED 6/5/02
 character*64 runname
 character*128 infile,bfile1,bfile2,outfile,mcfile

!c REVISED 7/8/99 NO EXTERNAL FILES CREATED WITHOUT A FLAG
!c character*128 SSBoutfile,Foutfile,Landoutfile,meanBoutfile

 integer*4 j,jj,time,ssbindex,index,iflag,sim,boot
 integer*4 k,nsim,ntime,nrec,nssb,nboot,baseyr
 integer*4 nfeasible,recflag,nrec1,nrec2,nmc,index_age
 integer*4 year,ftaryear

!c REVISED 7/1/99
 integer*4 lowerage,upperage
 integer option

 logical age2recflag,existflag
 logical done,quotaflag,constflag
 logical indexflag,sfaflag
 logical mcflag,mixflag,use_ftarget,ftarflag
 logical zprojflag,prflag,constdiscflag
 logical bdrecflag,constmflag,bootflag

 real*8 p_reclevel(1:maxssb,1:maxrec),recruit(1:maxrec)
 real*8 past_n(1:maxage)
 real*8 next_n(1:maxage)

 real*8 uniform, reclevel, zproj, bootunit
 real*8 m_upper,m_lower,ssb_value
 real*8 past_zproj,past_m
 real*8 ssb_cut(maxssb-1)
 real*8 past_ssb

!c REVISED 7/1/99
 real*8 ubland,fquota,landings,discards,ssb,h,gamma,meanB

!c REVISED 7/8/99
!c REVISED FEB-2002
 real*8 f,FmeanB, totB

 real*8 obsrec(1:maxobsrec),obsssb(1:maxobsrec)
 real*8 rssb(1:maxobsrec),sortrssb(1:maxobsrec)
 real*8 obsrec1(1:maxobsrec),obsrec2(1:maxobsrec)

 77

 real*8 obsssb1(1:maxobsrec),obsssb2(1:maxobsrec)
 real*8 sort1(1:maxobsrec),sort2(1:maxobsrec)

!c REVISED FEB-2002
 real*8 sortrec(1:maxobsrec)
 real*8 wt(1:maxage),wtdisc(1:maxage)
 real*8 fm(1:maxage)

!c REVISED 7/8/99
!c real*8 pctvalue(1:maxpct),ssbthresh,meanBthresh,FmeanBthresh
!c REVISED 6/5/02
 real*8 pctvalue(1:maxpct)
 real*8 ssbthresh,meanBthresh,FmeanBthresh

!c REVISED FEB-2002
 real*8 Fthresh,totBthresh

 real*8 ssbcut_m4
 real*8 mc_wt,mc_num

!c REVISED FEB-2002
 real*8 residvar,ssb_srr
 real*8 phi,sigmasqw,last_resid
 real*8 a_bhsrr,b_bhsrr

 real*8 a_ricsrr,b_ricsrr
 real*8 a_shsrr,b_shsrr,k_shsrr
 real*8 lnrec_mean,lnrec_std
 real*8 ssb_unit,rec_unit
 real*8 ftarget,ssb_min
 real*8 rssb_lower,rssb_upper,rssb_max,rssb_min
 real*8 past_pr(1:maxage)
 real*8 gasdev
 real*8 rtsafe,ran2

!c REVISED 6/5/02
 common /params/ nfeasible,iflag,nboot,nsim,ntime
 common /pcxval/ pctvalue

 allocate(n(maxage),pr(maxage),wtland(maxage),discfrac(maxage))

!ccc
!!c MAIN PROGRAM

 78

!ccc

!ccc
!!c READ SYSTEM DATA
!ccc
!!c read input filename from standard input
!c REVISED 6/5/02
 print *,' '
 print *,'Enter the input filename:'
 read (*,'(a128)') infile

!c read output filename from standard input
!c REVISED 6/5/02
 print *,' '
 print *, 'Enter the output filename:'
 read (*,'(a128)') outfile

!c REVISED 7/8/99 NO EXTERNAL FILES CREATED WITHOUT A FLAG
!c REVISED 6/5/02
!c print *,' '
!c print *, 'Enter the SSB output filename:'
!c read (*,'(a128)') SSBoutfile
!c print *,' '
!c print *, 'Enter the MEAN B output filename:'
!c read (*,'(a128)') meanBoutfile
!c print *,' '
!c print *, 'Enter the F output filename:'
!c read (*,'(a128)') Foutfile
!c print *,' '
!c print *, 'Enter the Landings output filename:'
!c read (*,'(a128)') Landoutfile

!c check whether input file exists
 inquire(file=infile,exist=existflag)

!c exit if input file does not exist
 if (existflag .eqv. .false.) then
 print *,' '
 print *,'Input file does not exist.'
 print *,' '
 print *,'Exiting projection analysis.'
 print *,' '
 goto 99999

 79

 endif

!c check whether output file exists
 inquire(file=outfile,exist=existflag)

!c exit if output file already exists
 if (existflag .eqv. .true.) then
 print *,' '
 print *,'Output file already exists.'
 print *,' '
 print *,'Exiting projection analysis.'
 print *,' '
 goto 99999
 endif

!ccc
!c READ INPUT DATA
!ccc
!c read input data from file named "infile"
 open(unit=1,file=infile,status='unknown')

!c READ RUN DESCRIPTOR FROM INFILE
!c read runname, a descriptor for this computation
 read(1,'(a64)') runname

!c READ SIMULATION DATA
!c read base year for time horizon
 read(1,*) baseyr

!c read length of time horizon
 read(1,*) ntime

 maxtime=ntime

!c read number of simulations to perform
 read(1,*) nsim

 maxsim=nsim

!c read number of reps to initialize the random number generator
 read(1,*) nreps

!c read the age2recflag
!c iflag=1 ==> age of recruitment is age-2
!c otherwise age of recruitment is age-1
 read(1,*) iflag

 80

 if (iflag .eq. 1) then
 age2recflag=.true.
 else
 age2recflag=.false.
 endif

!c read the mixflag
!c iflag=1 ==> catch projections are based on either F or a QUOTA
!c for each year in the planning horizon
 read(1,*) iflag
 if (iflag .eq. 1) then
 mixflag=.true.
 else
 mixflag=.false.
 endif

!c read the discard flag
!c iflag=1 ==> discarding is included in projections
!c and discflag is set to TRUE
 read(1,*) iflag
 if (iflag .eq. 1) then
 discflag=.true.
 else
 discflag=.false.
 endif

!c read the quotaflag
!c iflag=1 ==> catch projections are based on quotas
!c and quotaflag is set to TRUE. Otherwise catch projections
!c are based upon fishing mortality rates.
 read(1,*) iflag
 if (iflag .eq. 1) then
 quotaflag=.true.
 else
 quotaflag=.false.
 endif

!c read the constflag
!c iflag=1 ==> F or quota level is CONSTANT
!c and constflag is set to TRUE.
!c Otherwise the F or quota level may VARY IN TIME
 read(1,*) iflag
 if (iflag .eq. 1) then
 constflag=.true.

 81

 else
 constflag=.false.
 endif

!c read the ftarflag
!c iflag=1 ==> ftarget is applied in year ftaryear after SSB threshold reached
 read(1,*) iflag
 if (iflag .eq. 1) then
 ftarflag=.true.
 else
 ftarflag=.false.
 endif

!c read the indexflag
!c iflag=1 ==> compute age-specific survey index of recruitment
 read(1,*) iflag
 if (iflag .eq. 1) then
 indexflag=.true.
 else
 indexflag=.false.
 endif

!c read the sfaflag
!c iflag=1 ==> compare realized ssb,meanb,and f_wt_b levels to thresholds
 read(1,*) iflag
 if (iflag .eq. 1) then
 sfaflag=.true.
 else
 sfaflag=.false.
 endif

!c read the mcflag
!c iflag=1 ==> output market category summaries to file
 read(1,*) iflag
 if (iflag .eq. 1) then
 mcflag=.true.
 else
 mcflag=.false.
 endif

!c read the zprojflag
!c iflag=1 ==> zproj varies through the planning horizon
 read(1,*) iflag
 if (iflag .eq. 1) then

 82

 zprojflag=.true.
 else
 zprojflag=.false.
 endif

!c read the prflag
!c iflag=1 ==> pr vector varies through the planning horizon
 read(1,*) iflag
 if (iflag .eq. 1) then
 prflag=.true.
 else
 prflag=.false.
 endif

!c read the constdiscflag
!c iflag=1 ==> discard fraction at age is constant
 read(1,*) iflag
 if (iflag .eq. 1) then
 constdiscflag=.true.
 else
 constdiscflag=.false.
 endif

!c read the bdrecflag
!c iflag=1 ==> recruitment is bounded by r/ssb constraints
!c for stochastic Beverton-Holt, Ricker, or Shepherd SRR
 read(1,*) iflag
 if (iflag .eq. 1) then
 bdrecflag=.true.
 else
 bdrecflag=.false.
 endif

!c read the constmflag
!c iflag=1 ==> natural mortality is constant
!c else use a uniform[m_lower,m_upper] rv
!c for stochastic natural mortality by year
 read(1,*) iflag
 if (iflag .eq. 1) then
 constmflag=.true.
 else
 constmflag=.false.
 endif

 83

!c read the bootflag
!c iflag=1 ==> use file of bootstrap initial
!c population sizes at age
!c otherwise read 1 initial population vector
!c from the input file
 read(1,*) iflag
 if (iflag .eq. 1) then
 bootflag=.true.
 else
 bootflag=.false.
 endif

 call OtherAlloc

!c READ BIOLOGICAL DATA
!c read number of age classes-last age is a plus-group
!c AND READ LOWER AND UPPER AGE FOR COMPUTING MEAN BIOMASS

!c REVISED 7/1/99
 read(1,*) nage,lowerage,upperage

 if (constmflag .eqv. .true.) then
!c read instantaneous natural mortality rate
 read(1,*) m
!c set constant past value of m
 past_m=m
 else
!c read parameters for uniform distribution of m
 read(1,*) m_lower,m_upper
!c read previous value of m, AGE-2 RECRUITMENT
 if (age2recflag .eqv. .true.) then
 read(1,*) past_m
 endif
 endif

!c read mean weights at age for the stock
 read(1,*) (wt(k),k=1,nage)

!c read mean weights at age for landed fish
 read(1,*) (wtland(k),k=1,nage)

!c read discard weights at age, IF APPLICABLE
 if (discflag .eqv. .true.) then
 read(1,*) (wtdisc(k),k=1,nage)

 84

 endif

!c read maturity probability at age
 read(1,*) (fm(k),k=1,nage)

!c read fraction of total mortality that occurs before spawning
 if (zprojflag .eqv. .true.) then
!c zproj varies by time period
!c read past value of zproj for AGE-2 RECRUITMENT
 if (age2recflag .eqv. .true.) then
 read(1,*) past_zproj
 endif
!c read the value of zproj by time period
 read(1,*) (var_zproj(k), k=1,ntime)
 else
!c read the constant value of zproj
 read(1,*) zproj
!c set past value of zproj
 past_zproj=zproj
 endif

!c read recflag
!c recflag=1 ==> MODEL 1 (MARKOV MATRIX)
!c recflag=2 ==> MODEL 2 (NONPARAMETRIC DENSITY-INDEPENDENT SRR)
!c recflag=3 ==> MODEL 3 (EMPIRICAL RECRUITMENT)
!c recflag=4 ==> MODEL 4 (2-SSB STATE NONPARAMETRIC SRR)
!c recflag=5 ==> MODEL 5 (BEVERTON-HOLT WITH LOGNORMAL ERROR)
!c recflag=6 ==> MODEL 6 (RICKER WITH LOGNORMAL ERROR)
!c recflag=7 ==> MODEL 7 (SHEPHERD WITH LOGNORMAL ERROR)
!c recflag=8 ==> MODEL 8 (LOGNORMAL DISTRIBUTION)
!c recflag=9 ==> MODEL 9 (TIME-VARYING EMPIRICAL RECRUITMENT)
!c recflag=10 ==> MODEL 10 (BEVERTON-HOLT WITH LOGNORMAL AR(1) ERROR)
!c recflag=11 ==> MODEL 11 (RICKER WITH LOGNORMAL AR(1) ERROR)
!c recflag=12 ==> MODEL 12 (SHEPHERD WITH LOGNORMAL AR(1) ERROR)
!c recflag=13 ==> MODEL 13 (LOGNORMAL DISTRIBUTION WITH AR(1) ERROR)
!c recflag=14 ==> MODEL 14 (EMPIRICAL CDF OF RECRUITMENT)
!c recflag=15 ==> MODEL 15 (TWO-STAGE EMPIRICAL CDF OF RECRUITMENT)
 read(1,*) recflag

!c read data for the chosen recruitment model
 if (recflag .eq. 1) then
!c MODEL 1
!c read number of recruitment levels
 read(1,*) nrec

 85

!c read recruitment levels
 read(1,*) (recruit(k),k=1,nrec)
!c read number of spawning stock levels
 read(1,*) nssb
!c read ssb cut points to define spawning stock levels
 read(1,*) (ssb_cut(k),k=1,(nssb-1))
!c read probability of recruitment level (k) given ssb level (j)
 do 5 j=1,nssb
 read(1,*) (p_reclevel(j,k),k=1,nrec)
5 continue

 else if (recflag .eq. 2) then
!c MODEL 2
!c read number of observed recruitment/ssb data points
 read(1,*) nrec
!c read observed recruitment series
 read(1,*) (obsrec(j),j=1,nrec)
!c read observed ssb series
 read(1,*) (obsssb(j),j=1,nrec)

 else if (recflag .eq. 3) then
!c MODEL 3
!c read number of observed recruitments
 read(1,*) nrec
!c read observed recruitment series
 read(1,*) (obsrec(j),j=1,nrec)

 else if (recflag .eq. 4) then
!c MODEL 4
!c read the number of low (1) and high (2) SSB data points
 read(1,*) nrec1,nrec2
!c read the cut point between low and high ssb states
 read(1,*) ssbcut_m4
!c read the observed recruitment series for low SSB
 read(1,*) (obsrec1(j),j=1,nrec1)
!c read the observed ssb series for low SSB
 read(1,*) (obsssb1(j),j=1,nrec1)
!c read the observed recruitment series for high SSB
 read(1,*) (obsrec2(j),j=1,nrec2)
!c read the observed ssb series for high SSB
 read(1,*) (obsssb2(j),j=1,nrec2)

 else if (recflag .eq. 5) then
!c MODEL 5

 86

!c read the a and b parameters and residual variance
 read(1,*) a_bhsrr,b_bhsrr,residvar
!c read the units of ssb input and recruitment output for the SRR
 read(1,*) ssb_unit,rec_unit

 else if (recflag .eq. 6) then
!c MODEL 6
!c read the a and b parameters and residual variance
 read(1,*) a_ricsrr,b_ricsrr,residvar
!c read the units of ssb input and recruitment output for the SRR
 read(1,*) ssb_unit,rec_unit

 else if (recflag .eq. 7) then
!c MODEL 7
!c read the a, b, and k parameters and residual variance
 read(1,*) a_shsrr,b_shsrr,k_shsrr,residvar
!c read the units of ssb input and recruitment output for the SRR
 read(1,*) ssb_unit,rec_unit

 else if (recflag .eq. 8) then
!c MODEL 8
!c read the parameters of the lognormal distribution
!c log(mean) and log(std)
 read(1,*) lnrec_mean,lnrec_std
!c read the units of recruitment output
 read(1,*) ssb_unit,rec_unit

 else if (recflag .eq. 9) then
!c MODEL 9
!c read the distribution of observed recruitments
!c for each year in the time horizon
 read(1,*) nrec
 do 301 ttime=1,ntime
 read(1,*)(obsrec3(ttime,j),j=1,nrec)
301 continue

!c REVISED FEB-2002
 else if (recflag .eq. 10) then
!c MODEL 10
!c read the a and b parameters and residual variance
 read(1,*) a_bhsrr,b_bhsrr,residvar
!c read the phi parameter and the last recruitment residual
 read(1,*) phi,last_resid
!c read the units of ssb input and recruitment output for the SRR

 87

 read(1,*) ssb_unit,rec_unit

 else if (recflag .eq. 11) then
!c MODEL 11
!c read the a and b parameters and residual variance
 read(1,*) a_ricsrr,b_ricsrr,residvar
!c read the phi parameter and the last recruitment residual
 read(1,*) phi,last_resid
!c read the units of ssb input and recruitment output for the SRR
 read(1,*) ssb_unit,rec_unit

 else if (recflag .eq. 12) then
!c MODEL 12
!c read the a, b, and k parameters and residual variance
 read(1,*) a_shsrr,b_shsrr,k_shsrr,residvar
!c read the phi parameter and the last recruitment residual
 read(1,*) phi,last_resid
!c read the units of ssb input and recruitment output for the SRR
 read(1,*) ssb_unit,rec_unit

 else if (recflag .eq. 13) then
!c MODEL 13
!c read the parameters of the lognormal distribution
!c log(mean) and log(std)
 read(1,*) lnrec_mean,lnrec_std
!c read the phi parameter and the last recruitment residual
 read(1,*) phi,last_resid
!c read the units of recruitment output
 read(1,*) ssb_unit,rec_unit

 else if (recflag .eq. 14) then
!c MODEL 14
!c read number of observed recruitment data points
 read(1,*) nrec
!c read observed recruitment series
 read(1,*) (obsrec(j),j=1,nrec)

 else if (recflag .eq. 15) then
!c MODEL 15
!c read the number of low (1) and high (2) SSB data points
 read(1,*) nrec1,nrec2
!c read the cut point between low and high ssb states
 read(1,*) ssbcut_m4
!c read the observed recruitment series for low SSB

 88

 read(1,*) (obsrec1(j),j=1,nrec1)
!c read the observed recruitment series for high SSB
 read(1,*) (obsrec2(j),j=1,nrec2)
 endif

!c read data to constrain realized r/ssb for lognormal error models
 if (bdrecflag .eqv. .true.) then
!c read percentiles of empirical R/SSB (min,10th,90th,max)
 read(1,*) rssb_min,rssb_lower,rssb_upper,rssb_max
!c read minimum empirical SSB (in KG)
 read(1,*) ssb_min
 endif

!c RECRUITMENT AT AGE-1
 if (age2recflag .eqv. .false.) then
!c read initial population vectors from a file, IF APPLICABLE
 if (bootflag .eqv. .true.) then

!c read number of bootstrapped initial population vectors
 read(1,*) nboot

 maxboot=nboot

 call allocation

!c REVISED 6/5/02
!c read the name of the file containing the bootstrap data
 read(1,'(a128)') bfile1

!c read the factor to convert the bootstrap data to
!c absolute numbers (bootunit)
 read(1,*) bootunit

!c read bootstrap data-each line in bfile1 corresponds
!c to one initial population vector ordered as n(1) n(2) ...
 open(unit=2,file=bfile1,status='old')
 do 50 j=1,nboot
 read(2,*) (boot_n(j,k),k=1,nage)
50 continue
 close(2)

!c convert the bootstrap data to absolute numbers at age
 do 60 j=1,nboot
 do 70 k=1,nage

 89

 boot_n(j,k)=boot_n(j,k)*bootunit
70 continue
60 continue

 else
!c otherwise read one initial population vector from the input file
 nboot=1

 maxboot=1

!c read the factor to convert the population vector data to
!c absolute numbers (bootunit)
 read(1,*) bootunit

!c read initial population vector
 read(1,*) (boot_n(1,k),k=1,nage)

!c convert the initial population vector to absolute numbers
 do 72 k=1,nage
 boot_n(1,k)=boot_n(1,k)*bootunit
72 continue
 endif

 else
!c RECRUITMENT AT AGE-2
!c read initial population vectors from a file, IF APPLICABLE
 if (bootflag .eqv. .true.) then
!c read number of bootstrapped initial population vectors
 read(1,*) nboot

 maxboot=nboot

 call allocation

!c read the name of the file containing the bootstrap data
 read(1,'(a30)') bfile1

!c read the factor to convert the bootstrap data to
!c absolute numbers (bootunit)
 read(1,*) bootunit

!c read bootstrap data-each line in bfile1 corresponds
!c to one initial population vector ordered as n(1) n(2) ...
 open(unit=2,file=bfile1,status='old')
 do 51 j=1,nboot
 read(2,*) (boot_n(j,k),k=1,nage)

 90

51 continue
 close(2)

!c REVISED 6/5/02
!c read the filename containing the bootstrap f's
 read(1,'(a128)') bfile2

!c read the bootstrap data-the f series is stored as 1 f per line
 open(unit=2,file=bfile2,status='old')
 do 44 j=1,nboot
 read(2,*) boot_f(j)
44 continue
 close(2)

!c convert the bootstrap data to absolute numbers at age
 do 61 j=1,nboot
 do 71 k=1,nage
 boot_n(j,k)=boot_n(j,k)*bootunit
71 continue
61 continue

 else
!c otherwise read one initial population vector from the input file
!c and prior f
 nboot=1

 maxboot=nboot

!c read the factor to convert the population vector data to
!c absolute numbers (bootunit)
 read(1,*) bootunit
!c read initial population vector
 read(1,*) (boot_n(1,k),k=1,nage)

!c read prior f
 read(1,*) boot_f(1)

!c convert the initial population vector to absolute numbers
 do 74 k=1,nage
 boot_n(1,k)=boot_n(1,k)*bootunit
74 continue
 endif
 endif

!c read parameters for age-specific recruitment index, IF APPLICABLE

 91

 if (indexflag .eqv. .true.) then

!c read age of recruitment index
 read(1,*) index_age

!c read critical value of index
 read(1,*) crit_index

!c read parameters for index prediction
!c svindex = a_intercept + b_slope * n(index_age)
 read(1,*) a_intercept, b_slope

 endif

!c read ssb threshold, IF APPLICABLE
 if (sfaflag .eqv. .true.) then
 read(1,*) ssbthresh, totBthresh, Fthresh, meanBthresh,FmeanBthresh
 endif

!c read ftarget and ftaryear, IF APPLICABLE
 if (ftarflag .eqv. .true.) then
 read(1,*) ftarget
 read(1,*) ftaryear
 endif

!c READ FISHERY DATA
!c read selectivity (pr) at age (k)
 if (prflag .eqv. .true.) then
!c pr varies by time period

!c read the past pr vector for AGE-2 RECRUITMENT
 if (age2recflag .eqv. .true.) then
 read(1,*) (past_pr(k),k=1,nage)
 endif

!c read the pr vector by time period
 do 75 j=1,ntime
 read(1,*) (var_pr(j,k), k=1,nage)
75 continue

 else
!c read the constant pr vector
 read(1,*) (pr(k),k=1,nage)

 92

!c set constant past value of pr
 do 78 k=1,nage
 past_pr(k)=pr(k)
78 continue
 endif

!c read fraction discarded at age, IF APPLICABLE
 if (discflag .eqv. .true.) then

!c read constant discard fraction at age
 if (constdiscflag .eqv. .true.) then
 read(1,*) (discfrac(k),k=1,nage)

!c read variable discard fraction at age
 else
 do 77 j=1,ntime
 read(1,*) (var_discfrac(j,k), k=1,nage)
77 continue
 endif
 endif

!c IF HARVESTING IS NOT A MIXTURE OF F AND QUOTA LEVELS
 if (mixflag .eqv. .false.) then
!c read F or quota level(s)
 if (quotaflag .eqv. .true.) then
!c QUOTA-BASED CATCHES
 if (constflag .eqv. .true.) then
!c FIXED QUOTA
 read(1,*) quota
 else
!c VARIABLE QUOTA
 read(1,*) (qseries(k),k=1,ntime)
 endif

 else
!c F-BASED CATCHES
 if (constflag .eqv. .true.) then
!c FIXED F
 read(1,*) F
 else
!c VARIABLE F
 read(1,*) (fseries(k),k=1,ntime)
 endif
 endif

 93

 else
!c HARVESTING IS A MIXTURE OF F AND QUOTA LEVELS
!c READ INDEX FOR EACH YEAR 1==>QUOTA LEVEL AND 0==>F LEVEL
 read(1,*) (mixyr(j),j=1,ntime)

!c READ VARIABLE QUOTA SERIES (USE -1 TO INDICATE AN F-BASED YEAR)
 read(1,*) (qseries(j),j=1,ntime)

!c READ VARIABLE F SERIES (USE -1 TO INDICATE A QUOTA-BASED YEAR)
 read(1,*) (fseries(j),j=1,ntime)
 endif

!c read data for market category suumaries, IF APPLICABLE
 if (mcflag .eqv. .true.) then
!c read number of market categories (MUST BE LESS THAN maxmc)
 read(1,*) nmc

!c read proportions at age by market category
 do 80 j=1,nmc
 read(1,*) (market(j,k),k=1,nage)
80 continue

!c REVISED 6/5/02
!c read output filename for market category data
 read(1,'(a128)') mcfile
 endif

 maxlen=maxboot*maxsim

!c CLOSE INPUT FILE
 close(1)

!c END OF DATA INPUT

!ccc
!c INITIALIZE VARIABLES
!ccc
!c SET THE REFERENCE PERCENTILE VALUES FOR OUTPUT
 pctvalue(1)=0.01
 pctvalue(2)=0.05
 pctvalue(3)=0.10
 pctvalue(4)=0.25
 pctvalue(5)=0.50

 94

 pctvalue(6)=0.75
 pctvalue(7)=0.90
 pctvalue(8)=0.95
 pctvalue(9)=0.99

!c INITIALIZE COUNTS
 do 230 j=1,maxtime
 crit_count(j)=0.
 ssb_count(j)=0.

!c REVISED 7/8/99
!c REVISED FEB-2002
 meanB_count(j)=0.
 FmeanB_count(j)=0.
 totB_count(j)=0.
 F_count(j)=0.
230 continue

!c COMPUTE sigmasqw FOR AR(1) MODELS
 if ((recflag .ge. 10) .and. (recflag .le. 13)) then
 sigmasqw=(1.0-phi*phi)*residvar
 endif

!c COMPUTE AND SORT RECRUITMENT PER SSB FOR MODEL 2, IF APPLICABLE
 if (recflag .eq. 2) then
 do 25 j=1,nrec
 rssb(j)=obsrec(j)/obsssb(j)
25 continue
 do 35 j=1,nrec
 sortrssb(j)=rssb(j)
35 continue
 do 45 j=(nrec+1),maxobsrec
 sortrssb(j)=-1
45 continue
!c SORTED R/SSB VALUES ARE IN LOCATIONS maxobsrec-nrec+1 to maxobsrec
 call hpsort(maxobsrec,sortrssb)
 endif

!c COMPUTE AND SORT RECRUITMENT PER SSB FOR MODEL 4, IF APPLICABLE
 if (recflag .eq. 4) then
!c LOW SSB STATE
 do 27 j=1,nrec1
 rssb(j)=obsrec1(j)/obsssb1(j)
27 continue

 95

 do 37 j=1,nrec1
 sort1(j)=rssb(j)
37 continue
 do 47 j=(nrec1+1),maxobsrec
 sort1(j)=-1
47 continue
!c SORTED R/SSB VALUES ARE IN LOCATIONS maxobsrec-nrec1+1 to maxobsrec
!c OF sort1 FOR THE LOW SSB STATE
 call hpsort(maxobsrec,sort1)
!c HIGH SSB STATE
 do 28 j=1,nrec2
 rssb(j)=obsrec2(j)/obsssb2(j)
28 continue
 do 38 j=1,nrec2
 sort2(j)=rssb(j)
38 continue
 do 48 j=(nrec2+1),maxobsrec
 sort2(j)=-1
48 continue
!c SORTED R/SSB VALUES ARE IN LOCATIONS maxobsrec-nrec2+1 to maxobsrec
!c OF sort2 FOR THE HIGH SSB STATE
 call hpsort(maxobsrec,sort2)
 endif

!c REVISED FEB-2002
!c COMPUTE AND SORT RECRUITMENT FOR MODEL 14, IF APPLICABLE
 if (recflag .eq. 14) then
 do 1035 j=1,nrec
 sortrec(j)=obsrec(j)
1035 continue
 do 1045 j=(nrec+1),maxobsrec
 sortrec(j)=-1
1045 continue
!c SORTED R VALUES ARE IN LOCATIONS maxobsrec-nrec+1 to maxobsrec
 call hpsort(maxobsrec,sortrec)
 endif

!c REVISED FEB-2002
!c COMPUTE AND SORT RECRUITMENT FOR MODEL 15, IF APPLICABLE
 if (recflag .eq. 15) then
 do 1037 j=1,nrec1
 sort1(j)=obsrec1(j)
1037 continue
 do 1047 j=(nrec1+1),maxobsrec

 96

 sort1(j)=-1
1047 continue
!c SORTED R VALUES ARE IN LOCATIONS maxobsrec-nrec1+1 to maxobsrec
!c OF sort1 FOR THE LOW SSB STATE
 call hpsort(maxobsrec,sort1)
 do 1038 j=1,nrec2
 sort2(j)=obsrec2(j)
1038 continue
 do 1048 j=(nrec2+1),maxobsrec
 sort2(j)=-1
1048 continue
!c SORTED R VALUES ARE IN LOCATIONS maxobsrec-nrec2+1 to maxobsrec
!c OF sort2 FOR THE HIGH SSB STATE
 call hpsort(maxobsrec,sort2)
 endif

!c WARMUP RANDOM NUMBER GENERATOR
 call warmup(nreps)
 print *,' '
 print *,'Projection analysis is running ...'

!ccc
!c RUN PROJECTION
!ccc

!c BEGIN THE SIMULATION: LOOP OVER nboot INITIAL POPULATION VECTORS
FOR
!c nsim SIMULATIONS AND ntime TIME STEPS

!c LOOP OVER BOOTSTRAPPED INITIAL POPULATION VECTORS
 do 100 boot=1,nboot

!c LOOP OVER NUMBER OF SIMULATIONS
 do 200 sim=1,nsim

!c COPY BOOTSTRAP DATA
 do 210 j=1,nage
 n(j)=boot_n(boot,j)
210 continue

!c RECRUITMENT AT AGE-2
!c COMPUTE POPULATION VECTOR IN PREVIOUS YEAR GIVEN F
 if (age2recflag .eqv. .true.) then

 97

!c SET pr TO past_pr IF pr IS TIME-VARYING
 if (prflag .eqv. .true.) then
 do 213 k=1,nage
 pr(k)=past_pr(k)
213 continue
 endif
!c SET m TO past_m if m IS TIME-VARYING
 if (constmflag .eqv. .false.) then
 m=past_m
 endif
!c EQN 2
 do 212 j=1,(nage-2)
 past_n(j)=n(j+1)*exp(m+boot_f(boot)*pr(j))
212 continue
 h=exp(-m-boot_f(boot))
 gamma=h/(1.0-h)
!c EQN 7
 past_n(nage-1)=n(nage)*exp(m+pr(nage)*boot_f(boot))/(1.0+gamma)
!c EQN 8
 past_n(nage)=gamma*past_n(nage-1)
 endif

!c SET use_ftarget FLAG TO FALSE FOR INITIAL TIME PERIOD
!c NOTE: use_ftarget IS DYNAMICALLY SET FOR PERIODS 2,...,NTIME
 use_ftarget=.false.

!c LOOP OVER TIME HORIZON
 do 300 time=1,ntime

!c SET VARIABLES THAT VARY BY TIME PERIOD
!c INITIALIZE RECRUITMENT RESIDUAL VECTOR FOR AR(1) MODELS
 if ((recflag .ge. 10) .and. (recflag .le. 13)) then

 resid(0)=last_resid
 do 207 k=1,ntime

 resid(k)=0.0
207 continue

 endif

!c IF zproj VARIES THROUGH TIME SET zproj=var_zproj(time)
 if (zprojflag .eqv. .true.) then
 zproj=var_zproj(time)
 endif

!c IF pr vector VARIES THROUGH TIME SET pr=var_pr(time)

 98

 if (prflag .eqv. .true.) then
 do 215 k=1,nage
 pr(k)=var_pr(time,k)
215 continue
 endif

!c IF discfrac vector VARIES THROUGH TIME SET discfrac=var_discfrac(time)
 if (constdiscflag .eqv. .false.) then
 do 205 k=1,nage
 discfrac(k)=var_discfrac(time,k)
205 continue
 endif

!c IF QUOTA LEVEL VARIES THROUGH TIME SET quota=qseries(time)
 if (mixflag .eqv. .true.) then
 quota=qseries(time)
 endif
 if ((quotaflag .eqv. .true.) .and.(constflag .eqv. .false.)) then
 quota=qseries(time)
 endif

!c GENERATE STOCHASTIC NATURAL MORTALITY, IF APPLICABLE
 if (constmflag .eqv. .false.) then
 uniform=ran2(idum)
 m=m_lower+uniform*(m_upper-m_lower)
 endif

!c COMPUTE CATCH AT AGE
!c PURE F OR QUOTA-BASED CATCHES
 if (mixflag .eqv. .false.) then
 if (quotaflag .eqv. .true.) then

!c BASED ON A PREDETERMINED QUOTA
!c COMPUTE AN UPPER BOUND ON LANDINGS (SET F=fmax)
 call calc_catch(n,nage,maxage,fmax,pr,m,maxcatch)
 ubland=0.
!c INCLUDE DISCARDS, IF APPLICABLE
 if (discflag .eqv. .true.) then
 do 305 j=1,nage
 ubland=ubland+maxcatch(j)*(1.-discfrac(j))*wtland(j)
305 continue
 else
 do 310 j=1,nage
 ubland=ubland+maxcatch(j)*wtland(j)

 99

310 continue
 endif
!c DETERMINE WHETHER THE QUOTA IS FEASIBLE
 if (quota .gt. ubland) then
 feasible(boot,sim)=.false.
 else
 feasible(boot,sim)=.true.
 endif

!c IF QUOTA IS NOT FEASIBLE, EXIT THIS SIMULATION
 if (feasible(boot,sim) .eqv. .false.) goto 999

!c COMPUTE F THAT TAKES THE QUOTA
 fquota=rtsafe(fmin,fmax,ftol)

!c STORE THE REALIZED F
 simf(boot,sim,time)=fquota

!c APPLY THIS F TO CALCULATE CATCH
 call calc_catch(n,nage,maxage,fquota,pr,m,catch)

 else
!c ELSE COMPUTE CATCH BASED ON A PREDETERMINED F
!c ALL F VALUES ARE FEASIBLE
 do 220 j=1, nboot
 do 225 jj=1,nsim
 feasible(j,jj)=.true.
225 continue
220 continue

 if (constflag .eqv. .true.) then
!c PROJECT CATCH USING A CONSTANT F
!c USE FTARGET, IF APPLICABLE
 if ((ftarflag .eqv. .true.) .and.(use_ftarget .eqv. .true.)) then
 call calc_catch(n,nage,maxage,ftarget,pr,m,catch)
 simf(boot,sim,time)=ftarget
 else
 call calc_catch(n,nage,maxage,f,pr,m,catch)
 simf(boot,sim,time)=f
 endif

 else
!c PROJECT CATCH USING A TIME-VARYING F
!c USE FTARGET, IF APPLICABLE

 100

 if ((ftarflag .eqv. .true.) .and.(use_ftarget .eqv. .true.)) then
 call calc_catch(n,nage,maxage,ftarget,pr,m,catch)
 simf(boot,sim,time)=ftarget
 else
 call calc_catch(n,nage,maxage,fseries(time),pr,m,catch)
 simf(boot,sim,time)=fseries(time)
 endif
 endif
 endif

 else if (mixflag .eqv. .true.) then
!c MIXTURE OF F AND QUOTA-BASED CATCHES
!c DETERMINE WHETHER AN F OR A QUOTA IS APPLIED
 if (mixyr(time) .eq. 1) then

!c QUOTA-BASED CATCH
!c COMPUTE AN UPPER BOUND ON LANDINGS (SET F=fmax)
 call calc_catch(n,nage,maxage,fmax,pr,m,maxcatch)
 ubland=0.
!c INCLUDE DISCARDS, IF APPLICABLE
 if (discflag .eqv. .true.) then
 do 395 j=1,nage
 ubland=ubland+maxcatch(j)*(1.-discfrac(j))*wtland(j)
395 continue
 else
 do 390 j=1,nage
 ubland=ubland+maxcatch(j)*wtland(j)
390 continue
 endif
!c CHECK IF QUOTA IS FEASIBLE
 if (qseries(time) .gt. ubland) then
 feasible(boot,sim)=.false.
 else
 feasible(boot,sim)=.true.
 endif
!c IF INFEASIBLE, EXIT THIS SIMULATION
 if (feasible(boot,sim) .eqv. .false.) goto 999
!c COMPUTE F TO REALIZE THE QUOTA
 fquota=rtsafe(fmin,fmax,ftol)
!c STORE THE REALIZED F
 simf(boot,sim,time)=fquota
!c APPLY THIS F TO CALCULATE CATCH
 call calc_catch(n,nage,maxage,fquota,pr,m,catch)

 101

 else if (mixyr(time) .eq. 0) then

!c F-BASED CATCH
!c PROJECT CATCH USING A TIME-VARYING F
!c USE FTARGET, IF APPLICABLE
 if ((ftarflag .eqv. .true.) .and.(use_ftarget .eqv. .true.)) then
 call calc_catch(n,nage,maxage,ftarget,pr,m,catch)
 simf(boot,sim,time)=ftarget
 else
 call calc_catch(n,nage,maxage,fseries(time),pr,m,catch)
 simf(boot,sim,time)=fseries(time)
 endif
 endif
 endif
!c END OF CATCH COMPUTATION
!c COMPUTE LANDINGS-NOTE THAT simf STORES THE REALIZED F
 landings=0.0
 if (discflag .eqv. .true.) then
 do 315 j=1,nage
 landings=landings+catch(j)*wtland(j)*(1.-discfrac(j))
315 continue
 else
 do 320 j=1,nage
 landings=landings+catch(j)*wtland(j)
320 continue
 endif

!c STORE THE LANDINGS
 simland(boot,sim,time)=landings

!c COMPUTE MARKET CATEGORY SUMMARIES, IF APPLICABLE
 if (mcflag .eqv. .true.) then

 if(boot==1.and.sim==1.and.time==1) then
call mcAlloc

 endif

!c CHECK IF DISCARDING IS INCLUDED IN PROJECTIONS
 if (discflag .eqv. .true.) then
!c INCLUDE DISCARD FRACTION AT AGE

!c SUM CATCH FOR MARKET CATEGORY 1
 mc_wt=0.0
 mc_num=0.0
 do 700 j=1,nage

 102

 mc_wt=mc_wt+catch(j)*wtland(j)*market(1,j)*(1.0-discfrac(j))
700 continue
 do 705 j=1,nage
 mc_num=mc_num+catch(j)*market(1,j)*(1.0-discfrac(j))
705 continue
 simmc1_w(boot,sim,time)=mc_wt
 simmc1_n(boot,sim,time)=mc_num

!c SUM CATCH FOR MARKET CATEGORY 2, IF APPLICABLE
 if (nmc .ge. 2) then
 mc_wt=0.0
 mc_num=0.0
 do 710 j=1,nage
 mc_wt=mc_wt+catch(j)*wtland(j)*market(2,j)*(1.0-discfrac(j))
710 continue
 do 715 j=1,nage
 mc_num=mc_num+catch(j)*market(2,j)*(1.0-discfrac(j))
715 continue
 simmc2_w(boot,sim,time)=mc_wt
 simmc2_n(boot,sim,time)=mc_num
 endif

!c SUM CATCH FOR MARKET CATEGORY 3, IF APPLICABLE
 if (nmc .eq. 3) then
 mc_wt=0.0
 mc_num=0.0
 do 720 j=1,nage
 mc_wt=mc_wt+catch(j)*wtland(j)*market(3,j)*(1.0-discfrac(j))
720 continue
 do 725 j=1,nage
 mc_num=mc_num+catch(j)*market(3,j)*(1.0-discfrac(j))
725 continue
 simmc3_w(boot,sim,time)=mc_wt
 simmc3_n(boot,sim,time)=mc_num
 endif

 else
!c THERE IS NO DISCARD FRACTION AT AGE

!c SUM CATCH FOR MARKET CATEGORY 1
 mc_wt=0.0
 mc_num=0.0
 do 730 j=1,nage
 mc_wt=mc_wt+catch(j)*wtland(j)*market(1,j)

 103

730 continue
 do 735 j=1,nage
 mc_num=mc_num+catch(j)*market(1,j)
735 continue
 simmc1_w(boot,sim,time)=mc_wt
 simmc1_n(boot,sim,time)=mc_num

!c SUM CATCH FOR MARKET CATEGORY 2, IF APPLICABLE
 if (nmc .ge. 2) then
 mc_wt=0.0
 mc_num=0.0
 do 740 j=1,nage
 mc_wt=mc_wt+catch(j)*wtland(j)*market(2,j)
740 continue
 do 745 j=1,nage
 mc_num=mc_num+catch(j)*market(2,j)
745 continue
 simmc2_w(boot,sim,time)=mc_wt
 simmc2_n(boot,sim,time)=mc_num
 endif

!c SUM CATCH FOR MARKET CATEGORY 3, IF APPLICABLE
 if (nmc .eq. 3) then
 mc_wt=0.0
 mc_num=0.0
 do 750 j=1,nage
 mc_wt=mc_wt+catch(j)*wtland(j)*market(3,j)
750 continue
 do 755 j=1,nage
 mc_num=mc_num+catch(j)*market(3,j)
755 continue
 simmc3_w(boot,sim,time)=mc_wt
 simmc3_n(boot,sim,time)=mc_num
 endif
 endif
 endif
! endif

!c COMPUTE DISCARDS, IF APPLICABLE
 if (discflag .eqv. .true.) then
 discards=0.0
 do 325 j=1,nage
 discards=discards+catch(j)*discfrac(j)*wtdisc(j)
325 continue

 104

!c STORE THE DISCARDS, IF APPLICABLE
 simdisc(boot,sim,time)=discards
 endif

!c AGE-2 RECRUITMENT
!c FOR THE INITIAL YEAR, COMPUTE SSB IN PREVIOUS YEAR
!c NOTE THAT past_ssb GENERATES RECRUITMENT
!c ALSO NOTE THAT IF pr, m, OR zproj ARE CONSTANT, THEN
!c past_pr=pr, past_m=m, AND past_zproj=zproj
 if ((age2recflag .eqv. .true.) .and. (time .eq. 1)) then

past_ssb=calc_ssb(past_n,nage,maxage,past_pr,past_m,boot_f(boot),past_zproj,fm,wt)
 endif

!c REVISED 7/1/99
!c COMPUTE MEAN B
 meanB=calc_meanB(n,lowerage,upperage,maxage,pr,m,simf(boot,sim,time),wtland)

!c STORE MEAN B
 simmeanB(boot,sim,time)=meanB

!c REVISED FEB-2002
!c COMPUTE TOTAL B
 totB=calc_totB(n,maxage,wt)

!c STORE TOTAL B
 simtotB(boot,sim,time)=totB

!c REVISED 7/8/99
!c COMPUTE FmeanB
 FmeanB=calc_FmeanB(n,lowerage,upperage,maxage,pr,m,simf(boot,sim,time),wtland)

!c STORE FmeanB
 simFmeanB(boot,sim,time)=FmeanB

!c COMPUTE SSB
 ssb=calc_ssb(n,nage,maxage,pr,m,simf(boot,sim,time),zproj,fm,wt)

!c STORE SSB
 simssb(boot,sim,time)=ssb

!c SET use_ftarget FLAG BASED ON ssb, IF APPLICABLE
 year=baseyr+time-1

 105

 if ((ftarflag .eqv. .true.) .and.(year .ge. ftaryear) .and.(ssb .ge. ssbthresh)) then
 use_ftarget=.true.
 else
 use_ftarget=.false.
 endif

!c SET ssb_value TO ssb OR past_ssb BASED ON RECRUITMENT AGE
 if (age2recflag .eqv. .false.) then
 ssb_value=ssb
 else
 ssb_value=past_ssb
 endif

!c GENERATE RECRUITMENT
 if (recflag .eq. 1) then
!c USE MODEL 1
!c DETERMINE SSB STATE (ssbindex)
 done=.false.
 index=0
 do while (done .eqv. .false.)
 index=index+1
 if (index .eq. nssb) then
 done=.true.
 ssbindex=index
 else if (ssb_value .lt. ssb_cut(index)) then
 done=.true.
 ssbindex=index
 endif
 end do

!c GENERATE STOCHASTIC RECRUITMENT (reclevel)
 uniform=ran2(idum)
 sum=0.0
 index=0
 done=.false.
 do while (done .eqv. .false.)
 index=index+1
 sum=sum+p_reclevel(ssbindex,index)
 if (uniform .lt. sum) then
 done=.true.
 reclevel=recruit(index)
 endif
 if (index .gt. maxrec) then

 106

 if (abs(uniform-sum) .lt. 0.01) then
 done=.true.
 reclevel=recruit(nrec)
 else
 print *,'ERROR GENERATING RECRUITMENT'
 done=.true.
 reclevel=recruit(nrec)
 endif
 endif
 end do

 else if (recflag .eq. 2) then
!c USE MODEL 2
 uniform=ran2(idum)
!c DETERMINE INDEX FOR INTERPOLATION
 index=int(uniform*(nrec-1))+1
 ssbindex=maxobsrec-nrec+index
!c GENERATE STOCHASTIC RECRUITMENT (reclevel)
 sum=uniform-(real(index-1)/real(nrec-1))
!c EQUATION 19

reclevel=sum*real(nrec-1)*(sortrssb(ssbindex+1)-sortrssb(ssbindex))+sortrssb(ssbindex)
!c EQUATION 24
 reclevel=reclevel*ssb_value

!c REVISED FEB-2002
 else if (recflag .eq. 14) then
!c USE MODEL 14
 uniform=ran2(idum)
!c DETERMINE INDEX FOR INTERPOLATION
 index=int(uniform*(nrec-1))+1
 ssbindex=maxobsrec-nrec+index
!c GENERATE STOCHASTIC RECRUITMENT (reclevel)
 sum=uniform-(real(index-1)/real(nrec-1))
!c EQUATION 19
 reclevel=sum*real(nrec-1)*(sortrec(ssbindex+1)-sortrec(ssbindex))+sortrec(ssbindex)

 else if (recflag .eq. 3) then
!c USE MODEL 3
 uniform=ran2(idum)
 ssbindex=int(uniform*nrec)+1
 reclevel=obsrec(ssbindex)
 else if (recflag .eq. 9) then
!C USE MODEL 9

 107

 uniform=ran2(idum)
 ssbindex=int(uniform*nrec)+1
 reclevel=obsrec3(time,ssbindex)

 else if (recflag .eq. 4) then
!c USE MODEL 4
 uniform=ran2(idum)
!c DETERMINE SSB STATE (LOW OR HIGH)
 if (ssb_value .lt. ssbcut_m4) then
!c DETERMINE INDEX FOR INTERPOLATION WITH LOW SSB
 index=int(uniform*(nrec1-1))+1
 ssbindex=maxobsrec-nrec1+index
!c GENERATE STOCHASTIC RECRUITMENT (reclevel)
 sum=uniform-(real(index-1)/real(nrec1-1))
!c EQUATION 19
 reclevel=sum*real(nrec1-1)*(sort1(ssbindex+1)-sort1(ssbindex))+sort1(ssbindex)
 else
!c DETERMINE INDEX FOR INTERPOLATION WITH HIGH SSB
 index=int(uniform*(nrec2-1))+1
 ssbindex=maxobsrec-nrec2+index
!c GENERATE STOCHASTIC RECRUITMENT (reclevel)
 sum=uniform-(real(index-1)/real(nrec2-1))
!c EQUATION 19
 reclevel=sum*real(nrec2-1)*(sort2(ssbindex+1)-sort2(ssbindex))+sort2(ssbindex)
 endif
!c EQUATION 24
 reclevel=reclevel*ssb_value

!c REVISED FEB-2002
 else if (recflag .eq. 15) then
!c USE MODEL 15
 uniform=ran2(idum)
!c DETERMINE SSB STATE (LOW OR HIGH)
 if (ssb_value .lt. ssbcut_m4) then
!c DETERMINE INDEX FOR INTERPOLATION WITH LOW SSB
 index=int(uniform*(nrec1-1))+1
 ssbindex=maxobsrec-nrec1+index
!c GENERATE STOCHASTIC RECRUITMENT (reclevel)
 sum=uniform-(real(index-1)/real(nrec1-1))
!c EQUATION 19
 reclevel=sum*real(nrec1-1)*(sort1(ssbindex+1)-sort1(ssbindex))+sort1(ssbindex)
 else
!c DETERMINE INDEX FOR INTERPOLATION WITH HIGH SSB
 index=int(uniform*(nrec2-1))+1

 108

 ssbindex=maxobsrec-nrec2+index
!c GENERATE STOCHASTIC RECRUITMENT (reclevel)
 sum=uniform-(real(index-1)/real(nrec2-1))
!c EQUATION 19
 reclevel=sum*real(nrec2-1)*(sort2(ssbindex+1)-sort2(ssbindex))+sort2(ssbindex)
 endif

 else if (((recflag .ge. 5) .and. (recflag .le. 8)) .or. ((recflag .ge. 10) .and. (recflag .le. 13)))
then
!c LOGNORMAL MODELS 5, 6, 7, AND 8, OR 10, 11, 12, AND 13
!c EXPRESS SSB (kg) IN APPROPRIATE UNITS FOR SRR
 ssb_srr=ssb_value/ssb_unit

 if ((recflag .eq. 5) .or. (recflag .eq. 10)) then
!c BEVERTON-HOLT SRR
 sum=a_bhsrr*ssb_srr/(b_bhsrr+ssb_srr)

 else if ((recflag .eq. 6) .or. (recflag .eq. 11)) then
!c RICKER SRR
 sum=a_ricsrr*ssb_srr*exp(-b_ricsrr*ssb_srr)

 else if ((recflag .eq. 7) .or. (recflag .eq. 12)) then
!c SHEPHERD SRR
 sum=1.0+((ssb_srr/k_shsrr)**b_shsrr)
 sum=a_shsrr*ssb_srr/sum

 else if ((recflag .eq. 8) .or. (recflag .eq. 13)) then
!c LOGNORMAL DISTRIBUTION
 sum=1.0
 endif

!c DO LOOP TO ENSURE CONSTRAINED R/SSB VALUES
 done=.false.

 do while (done .eqv. .false.)

!c GENERATE UNIT NORMAL RANDOM VARIATE
 z=gasdev(idum)

!c IF UNCORRELATED (MODELS 5-7), TRANSFORM z WITH RESIDUAL VARIANCE
 if ((recflag .ge. 5) .and. (recflag .le. 7)) then

!c TRANSFORM UNIT NORMAL VARIATE TO N(0,residvar) VARIATE
 z=z*(residvar)**0.5

 109

!c ELSE IF CORRELATED (MODELS 5-7), TRANSFORM z WITH SIGMAW VARIANCE
 else if ((recflag .ge. 10) .and. (recflag .le. 12)) then

!c TRANSFORM UNIT NORMAL VARIATE TO N(0,sigmasqw) VARIATE
 z=z*(sigmasqw)**0.5

 else if ((recflag .eq. 8) .or. (recflag .eq. 13)) then

!c ELSE TRANSFORM z TO N(lnrec_mean,lnrec_std^2) VARIATE
 z=lnrec_mean+z*lnrec_std

 endif

!c EXPONENTIATE IF UNCORRELATED
 if ((recflag .ge. 5) .and. (recflag .le. 8)) then
 z=exp(z)

!c ELSE INCLUDE PREVIOUS RESIDUAL
 else if ((recflag .ge. 10) .and. (recflag .le. 13)) then

 z=z+phi*resid(time-1)

 z=exp(z)

 endif

!c APPLY LOGNORMAL VARIATE TO sum
 reclevel=sum*z

!c COMPUTE RESIDUAL
 if ((recflag .ge. 10) .and. (recflag .le. 13)) then

 resid(time)=log(reclevel)-log(sum)

endif

!c EXPRESS RECRUITMENT (rec_unit) IN ABSOLUTE NUMBERS OF FISH
 reclevel=reclevel*rec_unit

!c CALCULATE REALIZED R/SSB VALUE
 z=reclevel/ssb_value

!c APPLY R/SSB CONSTRAINTS, IF APPLICABLE

 110

 if (bdrecflag .eqv. .true.) then
 if (ssb_value .lt. ssb_min) then
!c IF SSB IS BELOW MINIMUM OBSERVED VALUE, USE BOUNDS
 if ((z .ge. rssb_lower) .and.(z .le. rssb_upper)) then
 done=.true.
 endif
!c ELSE USE MIN AND MAX OBSERVED R/SSB VALUES AS CUTOFFS
 else if (ssb_value .ge. ssb_min) then
 if ((z .ge. rssb_min) .and. (z .le. rssb_max)) then
 done=.true.
 endif
 endif
 else
!c DO NOT APPLY R/SSB CONSTRAINTS
 done=.true.
 endif
 end do
 endif

!c STORE THE REALIZED RECRUITMENT
 simrecr(boot,sim,time)=reclevel/bootunit

 if (indexflag .eqv. .true.) then
!c STORE THE REALIZED VALUE FOR AGE index_age AND CONVERT TO INDEX
 simsvind(boot,sim,time)=a_intercept +b_slope*n(index_age)/bootunit
 endif

!c COMPUTE NEXT POPULATION VECTOR
 call calc_next_n(n,nage,pr,m,simf(boot,sim,time),reclevel,next_n)

!c COPY ssb TO past_ssb
 past_ssb=ssb

!c COPY NEXT POPULATION VECTOR TO CURRENT POPULATION VECTOR
 do 330 j=1,nage
 n(j)=next_n(j)
330 continue

300 continue
!c END OF TIME HORIZON LOOP

!c JUMP POINT TO EXIT TIME LOOP WHEN QUOTA LEVEL IS INFEASIBLE
999 continue

 111

200 continue
!c END OF SIMULATION LOOP

100 continue
!c END OF LOOP OVER BOOTSTRAP REPLICATES

!c REVISED 7/8/99 NO EXTERNAL FILES CREATED WITHOUT A FLAG
!c open(unit=89,file=SSBoutfile,status='unknown')
!c open(unit=92,file=meanBoutfile,status='unknown')
!c open(unit=90,file=Foutfile,status='unknown')
!c open(unit=91,file=Landoutfile,status='unknown')

!c do 1003 sim=1, nsim
!c do 1002 boot=1,nboot
!c write(89,*)(simssb(boot,sim,time)/1000,time=1,ntime)
!c write(92,*)(simmeanB(boot,sim,time)/1000,time=1,ntime)
!c write(90,*)(simf(boot,sim,time),time=1,ntime)
!c write(91,*)(simland(boot,sim,time),time=1,ntime)
!c 1002 continue
!c 1003 continue
!c close(89)
!c close(92)
!c close(90)
!c close(91)

!ccc
!c SUMMARIZE RESULTS
!ccc

!c COMPUTE NUMBER OF FEASIBLE SIMULATIONS FOR AVERAGING
 allfeasible = .true.
 if ((quotaflag .eqv. .true.) .or. (mixflag .eqv. .true.)) then
 nfeasible=0
 do 400 j=1,nboot
 do 410 jj=1,nsim
 if (feasible(j,jj) .eqv. .true.) then
 nfeasible=nfeasible+1
 endif
410 continue
400 continue

!c REVISED JUL-2002
 if (nfeasible .lt. (nsim*nboot)) then

 allfeasible = .false.

 112

endif
 p_feasible=real(nfeasible)/real((nsim*nboot))
 else
!c IF PROJECTIONS ARE F_BASED, ALL REALIZATIONS ARE FEASIBLE
 nfeasible=nsim*nboot

p_feasible=1.000000
 endif

!c EXIT IF NO FEASIBLE SIMULATIONS
 if (nfeasible .eq. 0) then
 print *,' '
 print *,'All simulations are infeasible: Landings quota is too large.'
 print *,' '
 print *,'Exiting projection analysis.'
 print *,' '
 goto 99999
 endif

!c SET THE OFFSET INDEX RELATED TO THE NUMBER OF INFEASIBLE
SOLUTIONS
 iflag=maxlen-nfeasible

!c REVISED 7/8/99
!c REVISED FEB-2002
!c COUNT THE NUMBER OF TIMES THAT SSB and MEAN B and F_WT_B
!c EXCEED THRESHOLD VALUES (ssbthresh & meanBthresh & FmeanBthresh)
!c INCLUDE Fthresh and totBthresh
 if (sfaflag .eqv. .true.) then
 do 440 j=1,nboot
 do 445 jj=1,nsim
 if ((feasible(j,jj)) .eqv. .true.) then
 do 450 jjj=1,ntime
 ssb = simssb(j,jj,jjj)
 if (ssb .ge. ssbthresh) then
 ssb_count(jjj)=ssb_count(jjj)+1.0
 endif
 meanB = simmeanB(j,jj,jjj)
 if (meanB .ge. meanBthresh) then
 meanB_count(jjj)=meanB_count(jjj)+1.0
 endif
 totB = simtotB(j,jj,jjj)
 if (totB .ge. totBthresh) then
 totB_count(jjj)=totB_count(jjj)+1.0
 endif

 113

 FmeanB = simFmeanB(j,jj,jjj)
 if (FmeanB .ge. FmeanBthresh) then
 FmeanB_count(jjj)=FmeanB_count(jjj)+1.0
 endif
 tmpF = simf(j,jj,jjj)
 if (tmpF .ge. Fthresh) then
 F_count(jjj)=F_count(jjj)+1.0
 endif
450 continue
 endif
445 continue
440 continue

!c COMPUTE CONDITIONAL PROBABILITY THAT SSB and MEAN B and F_WT_B
!c EXCEED THRESHOLD VALUES IN EACH YEAR (CONDITIONED ON FEASIBLE
TRAJECTORIES)
!c INCLUDE F and totB
 do 455 j=1, ntime
 p_ssbthresh(j)=ssb_count(j) / real(nfeasible)
 p_meanBthresh(j)=meanB_count(j) / real(nfeasible)
 p_totBthresh(j)=totB_count(j) / real(nfeasible)
 p_FmeanBthresh(j)=FmeanB_count(j) / real(nfeasible)
 p_Fthresh(j)=F_count(j) / real(nfeasible)
455 continue

!c REVISED JUL-2002
!c COMPUTE PROBABILITY THAT SSB, MEAN_B, F_WT_B, F, and TOT_B
!c EXCEED THRESHOLD VALUES IN EACH YEAR (USE ALL TRAJECTORIES)
 if (allfeasible .eqv. .false.) then
 do 456 j=1, ntime
 pjoint_ssbthresh(j)=p_ssbthresh(j)*p_feasible
 pjoint_meanBthresh(j)=p_meanBthresh(j)*p_feasible

 pjoint_totBthresh(j)=p_totBthresh(j)*p_feasible
 pjoint_FmeanBthresh(j)=p_FmeanBthresh(j)*p_feasible+(1.0-p_feasible)
 pjoint_Fthresh(j)=p_Fthresh(j)*p_feasible+(1.0-p_feasible)
456 continue
 endif
 endif

!c COUNT THE NUMBER OF TIMES THAT THE RECRUITMENT INDEX
!c EXCEEDS THE CRITICAL VALUE
 if (indexflag .eqv. .true.) then
 do 420 j=1,nboot

 114

 do 425 jj=1,nsim
 if ((feasible(j,jj)).eqv. .true.) then
 do 430 jjj=1,ntime
 res_n2 = simsvind(j,jj,jjj)
 if (res_n2 .ge. crit_index) then
 crit_count(jjj)=crit_count(jjj)+1.0
 endif
430 continue
 endif
425 continue
420 continue

!c COMPUTE CONDITIONAL PROBABILITY THAT RECRUITMENT INDEX
!c EXCEEDS CRITICAL VALUE IN EACH YEAR
 do 435 j=1, ntime
 p_index(j)=crit_count(j) / real(nfeasible)
435 continue

!c REVISED JUL-2002
!c COMPUTE PROBABILITY THAT RECRUITMENT INDEX
!c EXCEEDS CRITICAL VALUE IN EACH YEAR
 if (allfeasible .eqv. .false.) then
 do 436 j=1, ntime
 pjoint_index(j)=p_index(j)*p_feasible
436 continue
 endif
 endif

!c REVISED 7/1/99
!c REVISED FEB-2002
!c SUMMARIZE THE FOLLOWING SIMULATED OUTPUTS:
!c
!c OUTPUT VARIABLE NAME
!c
!c 1. SPAWNING STOCK BIOMASS (MT) simssb
!c 2. MEAN STOCK BIOMASS (MT) simmeanB
!c OF AGES lowerage to upperage
!c 3a. F WEIGHTED BY MEAN BIOMASS simFmeanB
!c OF AGES lowerage to upperage
!c 3b. TOTAL STOCK BIOMASS (MT) simtotB
!c 4. RECRUITMENT (#) simrecr
!c 5. SURVEY INDEX FOR AGE index_age simsvind
!c 6. DISCARDS (MT) simdisc
!c 7. LANDINGS (MT) {F-based only} simland

 115

!c 8. REALIZED F {quota-based only} simf
!c 9. MARKET CATEGORY SUMMARIES simmc*_w,simmc*_n

!c REVISED 7/1/99
 call summarize(simmeanB,avgmeanB,sdmeanB,pctmeanB,quotaflag,mixflag)

!c REVISED 7/8/99
 call summarize(simFmeanB,avgFmeanB,sdFmeanB,pctFmeanB,quotaflag,mixflag)

!c REVISED FEB-2002
 call summarize(simtotB,avgtotB,sdtotB,pcttotB,quotaflag,mixflag)

 call summarize(simssb,avgssb,sdssb,pctssb,quotaflag,mixflag)
 call summarize(simrecr,avgrecr,sdrecr,pctrecr,quotaflag,mixflag)
 call summarize(simsvind,avgsvind,sdsvind,pctsvind,quotaflag,mixflag)
 call summarize(simdisc,avgdisc,sddisc,pctdisc,quotaflag,mixflag)

!c COMPUTE TIME-AVERAGES OF LANDINGS FOR F-BASED PROJECTIONS
 if ((quotaflag .eqv. .false.) .and. (mixflag .eqv. .false.)) then
 call summarize(simland,avgland,sdland,pctland,quotaflag,mixflag)
 endif

!c COMPUTE TIME-AVERAGES OF REALIZED F'S FOR QUOTA-BASED
PROJECTIONS
 if ((quotaflag .eqv. .true.) .and. (mixflag .eqv. .false.)) then
 call summarize(simf,avgf,sdf,pctf,quotaflag,mixflag)
 endif

!c COMPUTE TIME-AVERAGES OF LANDINGS AND QUOTAS
 if ((mixflag .eqv. .true.) .or. (ftarflag .eqv. .true.)) then
 call summarize(simland,avgland,sdland,pctland,quotaflag,mixflag)
 call summarize(simf,avgf,sdf,pctf,quotaflag,mixflag)
 endif

!c COMPUTE TIME-AVERAGES OF LANDINGS BY MARKET CATEGORY
 if (mcflag .eqv. .true.) then
 call summarize(simmc1_w,avgmc1_w,sdmc1_w,pctmc1_w,quotaflag,mixflag)
 call summarize(simmc1_n,avgmc1_n,sdmc1_n,pctmc1_n,quotaflag,mixflag)
 if (nmc .ge. 2) then
 call summarize(simmc2_w,avgmc2_w,sdmc2_w,pctmc2_w,quotaflag,mixflag)
 call summarize(simmc2_n,avgmc2_n,sdmc2_n,pctmc2_n,quotaflag,mixflag)
 endif
 if (nmc .eq. 3) then
 call summarize(simmc3_w,avgmc3_w,sdmc3_w,pctmc3_w,quotaflag, mixflag)

 116

 call summarize(simmc3_n,avgmc3_n,sdmc3_n,pctmc3_n,quotaflag,mixflag)
 endif

!ccc
!c OUTPUT RESULTS
!ccc

!c WRITE SUMMARIES TO OUTPUT FILE
!c OUTPUT AVERAGES AND MEDIANS BY YEAR
 open(unit=2,file=mcfile,status='unknown')
!c 1, 2, or 3 MARKET CATEGORIES
 if (nmc .eq. 1) then
 write(2,*) 'AVERAGE TOTAL WEIGHT (KG) AND NUMBERS BY YEAR'
 do 800 j=1,ntime
 write(2,'(i4,2(1x,f10.0))') (baseyr+j-1),avgmc1_w(j),avgmc1_n(j)
800 continue
 write(2,*) 'MEDIAN TOTAL WEIGHT (KG) AND NUMBERS BY YEAR'
 do 802 j=1,ntime
 write(2,'(i4,2(1x,f10.0))') (baseyr+j-1),pctmc1_w(j,5),pctmc1_n(j,5)
802 continue

 else if (nmc .eq. 2) then
 write(2,*) 'AVERAGE TOTAL WEIGHT (KG) AND NUMBERS BY YEAR'
 do 810 j=1,ntime
 write(2,'(i4,4(1x,f10.0))')
(baseyr+j-1),avgmc1_w(j),avgmc1_n(j),avgmc2_w(j),avgmc2_n(j)
810 continue
 write(2,*) 'MEDIAN TOTAL WEIGHT (KG) AND NUMBERS BY YEAR'
 do 812 j=1,ntime
 write(2,'(i4,4(1x,f10.0))')
(baseyr+j-1),pctmc1_w(j,5),pctmc1_n(j,5),pctmc2_w(j,5),pctmc2_n(j,5)
812 continue

 else if (nmc .eq. 3) then
 write(2,*) 'AVERAGE TOTAL WEIGHT (KG) AND NUMBERS BY YEAR'
 do 820 j=1,ntime
 write(2,'(i4,6(1x,f10.0))')
(baseyr+j-1),avgmc1_w(j),avgmc1_n(j),avgmc2_w(j),avgmc2_n(j),avgmc3_w(j),avgmc3_n(j)
820 continue
 write(2,*) 'MEDIAN TOTAL WEIGHT (KG) AND NUMBERS BY YEAR'
 do 822 j=1,ntime
 write(2,'(i4,6(1x,f10.0))')
baseyr+j-1,pctmc1_w(j,5),pctmc1_n(j,5),pctmc2_w(j,5),pctmc2_n(j,5),pctmc3_w(j,5),pctmc3_n
(j,5)

 117

822 continue
 endif

 write(2,*) 'SIMULATED AGGREGATE LANDINGS BY MARKET CATEGORY'
 if (nmc .eq. 1) then
 do 900 time=1,ntime
 write(2,*) 'TIME=',(baseyr+time-1)
 do 905 boot=1,nboot
 do 910 sim=1,nsim
 write(2,'(2(1x,f10.0))') simland(boot,sim,time),simmc1_w(boot,sim,time)
910 continue
905 continue
900 continue

 else if (nmc .eq. 2) then
 do 920 time=1,ntime
 write(2,*) 'TIME=',(baseyr+time-1)
 do 925 boot=1,nboot
 do 930 sim=1,nsim
 write(2,'(3(1x,f10.0))')
simland(boot,sim,time),simmc1_w(boot,sim,time),simmc2_w(boot,sim,time)
930 continue
925 continue
920 continue

 else if (nmc .eq. 3) then
 do 940 time=1,ntime
 write(2,*) 'TIME=',(baseyr+time-1)
 do 945 boot=1,nboot
 do 950 sim=1,nsim
 write(2,'(4(1x,f10.0))')
simland(boot,sim,time),simmc1_w(boot,sim,time),simmc2_w(boot,sim,time),simmc3_w(boot,si
m,time)
950 continue
945 continue
940 continue
 endif
 close(2)
 endif

!c WRITE RESULTS TO OUTPUT FILE
 open(unit=2,file=outfile,status='unknown')
 write(2,*) 'PROJECTION RUN: ',runname
 write(2,*) 'INPUT FILE: ',infile

 118

 write(2,*) 'OUTPUT FILE: ',outfile
 write(2,*) 'RECRUITMENT MODEL: ',recflag
 write(2,*) 'NUMBER OF BOOTSTRAP REALIZATIONS: ',nboot
 write(2,*) 'NUMBER OF SIMULATIONS PER BOOTSTRAP REALIZATION: ',nsim
 write(2,*) 'TOTAL NUMBER OF SIMULATIONS: ',(nsim*nboot)
 write(2,*) 'NUMBER OF FEASIBLE SIMULATIONS: ',nfeasible
 write(2,*) 'PROPORTION OF SIMULATIONS THAT ARE FEASIBLE: ',p_feasible
 write (2,*) ' '

 if (mixflag .eqv. .false.) then
 if (quotaflag .eqv. .true.) then
 write(2,*) 'QUOTA-BASED PROJECTIONS'
 if (constflag .eqv. .true.) then
 write(2,'(a,f10.3)') 'CONSTANT QUOTA (000 MT):',(quota/1.0e6)
 else
 write(2,*) 'TIME-VARYING QUOTA'
 write(2,*) 'YEAR QUOTA (000 MT)'
 do 500 j=1,ntime
 write(2,'(1x,i4,1x,f10.3)') (baseyr+j-1),(qseries(j)/1.0e6)
500 continue
 endif
 else
 write(2,*) 'F-BASED PROJECTIONS'
 if (constflag .eqv. .true.) then
 write(2,'(a,f5.3)') 'CONSTANT F:',f
 else
 if (ftarflag .eqv. .true.) then
 write(2,*) 'F-SERIES IF SSB THRESHOLD IS NEVER EXCEEDED'
 endif
 write(2,*) 'TIME-VARYING F'
 write(2,*) 'YEAR F'
 do 510 j=1,ntime
 write(2,'(1x,i4,4x,f5.3)') (baseyr+j-1),fseries(j)
510 continue
 endif
 endif

 else
!c MIXTURE OF F AND QUOTA-BASED CATCHES
 write(2,*) 'MIXTURE OF F AND QUOTA BASED CATCHES'
 write(2,*) 'YEAR F QUOTA (THOUSAND MT)'
 do 5300 j=1,ntime
 if (mixyr(j) .eq. 1) then
 write(2,'(1x,i4,a,f10.3)') (baseyr+j-1),' ',(qseries(j)/1.0e6)

 119

 else
 write(2,'(1x,i4,2x,f5.3)') (baseyr+j-1),fseries(j)
 endif
5300 continue
 endif

 write(2,*) ' '
 write(2,*) 'SPAWNING STOCK BIOMASS (THOUSAND MT)'
 write(2,*) 'YEAR AVG SSB (000 MT) STD'
 do 520 j=1,ntime
 write(2,'(1x,i4,4x,f10.3,4x,f10.3)') (baseyr+j-1),(avgssb(j)/1.0e6),(sdssb(j)/1.0e6)
520 continue
 write(2,*) ' '
 write(2,*) 'PERCENTILES OF SPAWNING STOCK BIOMASS (000 MT)'
 write(2,*) 'YEAR 1% 5% 10% 25% 50% 75% 90% 95%
 99%'
 do 525 j=1,ntime
 write(2,'(1x,i4,9(1x,f10.3))') (baseyr+j-1),((pctssb(j,k)/1.0e6),k=1,maxpct)
525 continue
 write(2,*) ' '

 if (sfaflag .eqv. .true.) then
 write(2,'(a,f10.3,a)') 'ANNUAL PROBABILITY THAT SSB EXCEEDS
THRESHOLD:',(ssbthresh/1.0e6),' THOUSAND MT'
 write(2,*) 'YEAR Pr(SSB > Threshold Value) FOR FEASIBLE SIMULATIONS'
 do 528 j=1,ntime
 write(2,'(1x,i4,12x,f5.3)') (baseyr+j-1),p_ssbthresh(j)
528 continue
 write(2,*) ' '
!c REVISED JUL-2002

if (allfeasible .eqv. .false.) then
 write(2,'(a,f10.3,a)') 'JOINT PROBABILITY THAT SSB EXCEEDS
THRESHOLD:',(ssbthresh/1.0e6),' THOUSAND MT'
 write(2,*) 'YEAR Pr(SSB > Threshold Value)*Pr(Feasible)'
 do 529 j=1,ntime
 write(2,'(1x,i4,12x,f5.3)') (baseyr+j-1),pjoint_ssbthresh(j)
529 continue
 write(2,*) ' '

endif
 endif

!c REVISED 7/1/99
 write(2,*) ' '
 write(2,*) 'MEAN BIOMASS (THOUSAND MT) FOR AGES:',lowerage,' TO ',upperage

 120

 write(2,*) 'YEAR AVG MEAN B (000 MT) STD'
 do 52044 j=1,ntime
 write(2,'(1x,i4,4x,f10.3,8x,f10.3)') (baseyr+j-1),(avgmeanB(j)/1.0e6),(sdmeanB(j)/1.0e6)
52044 continue
 write(2,*) ' '
 write(2,*) 'PERCENTILES OF MEAN STOCK BIOMASS (000 MT)'
 write(2,*) 'YEAR 1% 5% 10% 25% 50% 75% 90% 95%
 99%'
 do 52545 j=1,ntime
 write(2,'(1x,i4,9(1x,f10.3))') (baseyr+j-1),((pctmeanB(j,k)/1.0e6),k=1,maxpct)
52545 continue

!c REVISED 7/8/99
 write(2,*) ' '
 if (sfaflag .eqv. .true.) then
 write(2,'(a,f10.3,a)') 'ANNUAL PROBABILITY THAT MEAN BIOMASS EXCEEDS
THRESHOLD:',(meanBthresh/1.0e6),' THOUSAND MT'
 write(2,*) 'YEAR Pr(MEAN B > Threshold Value) FOR FEASIBLE SIMULATIONS'
 do 52899 j=1,ntime
 write(2,'(1x,i4,12x,f5.3)') (baseyr+j-1),p_meanBthresh(j)
52899 continue
 write(2,*) ' '
!c REVISED JUL-2002

if (allfeasible .eqv. .false.) then
 write(2,'(a,f10.3,a)') 'JOINT PROBABILITY THAT MEAN BIOMASS EXCEEDS
THRESHOLD:',(meanBthresh/1.0e6),' THOUSAND MT'
 write(2,*) 'YEAR Pr(MEAN B > Threshold Value)*Pr(Feasible)'
 do 52897 j=1,ntime
 write(2,'(1x,i4,12x,f5.3)') (baseyr+j-1),pjoint_meanBthresh(j)
52897 continue
 write(2,*) ' '

endif
 endif

!c REVISED 7/8/99
 write(2,*) ' '
 write(2,*) 'F WEIGHTED BY MEAN BIOMASS FOR AGES:',lowerage,' TO ',upperage
 write(2,*) 'YEAR AVG F_WT_B STD'
 do 55099 j=1,ntime
 write(2,'(1x,i4,4x,f5.3,10x,f5.3)') (baseyr+j-1),avgFmeanB(j),sdFmeanB(j)
55099 continue
 write(2,*) ' '
 write(2,*) 'PERCENTILES OF F WEIGHTED BY MEAN BIOMASS FOR
AGES:',lowerage,' TO ',upperage

 121

 write(2,*) 'YEAR 1% 5% 10% 25% 50% 75% 90% 95% 99%'
 do 55599 j=1,ntime
 write(2,'(1x,i4,9(1x,f6.3))') (baseyr+j-1),(pctFmeanB(j,k),k=1,maxpct)
55599 continue
 write(2,*) ' '
 if (sfaflag .eqv. .true.) then
 write(2,'(a,f6.3,a)') 'ANNUAL PROBABILITY THAT F WEIGHTED BY MEAN
BIOMASS EXCEEDS THRESHOLD:',FmeanBthresh
 write(2,*) 'YEAR Pr(F_WT_B > Threshold Value) FOR FEASIBLE SIMULATIONS'
 do 52890 j=1,ntime
 write(2,'(1x,i4,12x,f5.3)') (baseyr+j-1),p_FmeanBthresh(j)
52890 continue
 write(2,*) ' '
!c REVISED JUL-2002

if (allfeasible .eqv. .false.) then
 write(2,'(a,f6.3,a)') 'JOINT PROBABILITY THAT F WEIGHTED BY MEAN
BIOMASS EXCEEDS THRESHOLD:',FmeanBthresh
 write(2,*) 'YEAR Pr(F_WT_B > Threshold Value)*Pr(Feasible)+(1-Pr(Feasible))'
 do 52893 j=1,ntime
 write(2,'(1x,i4,12x,f5.3)') (baseyr+j-1),pjoint_FmeanBthresh(j)
52893 continue
 write(2,*) ' '

endif
 endif

!c REVISED FEB-2002
 write(2,*) ' '
 write(2,*) 'TOTAL STOCK BIOMASS (THOUSAND MT)'
 write(2,*) 'YEAR AVG TOTAL B (000 MT) STD'
 do 62044 j=1,ntime
 write(2,'(1x,i4,4x,f10.3,8x,f10.3)') (baseyr+j-1),(avgtotB(j)/1.0e6),(sdtotB(j)/1.0e6)
62044 continue
 write(2,*) ' '
 write(2,*) 'PERCENTILES OF TOTAL STOCK BIOMASS (000 MT)'
 write(2,*) 'YEAR 1% 5% 10% 25% 50% 75% 90% 95%
 99%'
 do 62545 j=1,ntime
 write(2,'(1x,i4,9(1x,f10.3))') (baseyr+j-1),((pcttotB(j,k)/1.0e6),k=1,maxpct)
62545 continue

 write(2,*) ' '
 if (sfaflag .eqv. .true.) then
 write(2,'(a,f10.3,a)') 'ANNUAL PROBABILITY THAT TOTAL STOCK BIOMASS
EXCEEDS THRESHOLD:',(totBthresh/1.0e6),' THOUSAND MT'

 122

 write(2,*) 'YEAR Pr(B > Threshold Value) FOR FEASIBLE SIMULATIONS'
 do 62899 j=1,ntime
 write(2,'(1x,i4,12x,f5.3)') (baseyr+j-1),p_totBthresh(j)
62899 continue
 write(2,*) ' '
!c REVISED JUL-2002

if (allfeasible .eqv. .false.) then
 write(2,'(a,f10.3,a)') 'JOINT PROBABILITY THAT TOTAL STOCK BIOMASS
EXCEEDS THRESHOLD:',(totBthresh/1.0e6),' THOUSAND MT'
 write(2,*) 'YEAR Pr(B > Threshold Value)*Pr(Feasible)'
 do 62897 j=1,ntime
 write(2,'(1x,i4,12x,f5.3)') (baseyr+j-1),pjoint_totBthresh(j)
62897 continue
 write(2,*) ' '

endif
 endif

 write(2,*) ' '
 write(2,*) 'RECRUITMENT UNITS ARE:',bootunit,' FISH'
 write(2,*) 'BIRTH AVG'
 write(2,*) 'YEAR RECRUITMENT STD'
 do 5201 j=1,ntime
 write(2,'(1x,i4,4x,f10.3,4x,f10.3)') (baseyr+j-1),avgrecr(j),sdrecr(j)
5201 continue
 write(2,*) ' '
 write(2,*) 'PERCENTILES OF RECRUITMENT UNITS ARE:',bootunit,' FISH'
 write(2,*) 'BIRTH'
 write(2,*) 'YEAR 1% 5% 10% 25% 50% 75% 90% 95%
 99%'
 do 5251 j=1,ntime
 write(2,'(1x,i4,9(1x,f10.3))') (baseyr+j-1),(pctrecr(j,k),k=1,maxpct)
5251 continue

 if (indexflag .eqv. .true.) then
 write(2,*) ' '
 write(2,*) 'ESTIMATED SURVEY INDEX FOR AGE:',index_age
 write(2,*) 'YEAR AVG INDEX (#) STD'
 do 505 j=1,ntime
 write(2,'(1x,i4,1x,f10.3,1x,f10.3)') (baseyr+j-1),avgsvind(j),sdsvind(j)
505 continue
 write(2,*) ' '
 write(2,*) 'PERCENTILES OF SURVEY INDEX FOR AGE:',index_age
 write(2,*) 'YEAR 1% 5% 10% 25% 50% 75% 90%
95% 99%'

 123

 do 506 j=1,ntime
 write(2,'(1x,i4,9(1x,f10.3))') (baseyr+j-1),(pctsvind(j,k),k=1,maxpct)
506 continue
 write(2,*) ' '
 write(2,*) 'ANNUAL PROBABILITY THAT SURVEY AGE INDEX
EXCEEDS:',crit_index
 write(2,*) 'YEAR Pr(Index > Critical value) FOR FEASIBLE SIMULATIONS'
 do 5102 j=1,ntime
 write(2,'(1x,i4,9x,f5.3)') (baseyr+j-1),p_index(j)
5102 continue
 write(2,*) ' '
!c REVISED JUL-2002

if (allfeasible .eqv. .false.) then
 write(2,*) 'JOINT PROBABILITY THAT SURVEY AGE INDEX
EXCEEDS:',crit_index
 write(2,*) 'YEAR Pr(Index > Critical value)*Pr(Feasible)'
 do 5107 j=1,ntime
 write(2,'(1x,i4,9x,f5.3)') (baseyr+j-1),pjoint_index(j)
5107 continue
 write(2,*) ' '

endif
 endif

 if ((quotaflag .eqv. .false.) .or. (mixflag .eqv. .true.)) then
 write(2,*) ' '
 write(2,*) 'LANDINGS FOR F-BASED PROJECTIONS'
 write(2,*) 'YEAR AVG LANDINGS (000 MT) STD'
 do 530 j=1,ntime
 write(2,'(1x,i4,4x,f10.3,8x,f10.3)') (baseyr+j-1),(avgland(j)/1.0e6),(sdland(j)/1.0e6)
530 continue
 write(2,*) ' '
 write(2,*) 'PERCENTILES OF LANDINGS (000 MT)'
 write(2,*) 'YEAR 1% 5% 10% 25% 50% 75% 90% 95%
 99%'
 do 535 j=1,ntime
 write(2,'(1x,i4,9(1x,f10.3))') (baseyr+j-1),((pctland(j,k)/1.0e6),k=1,maxpct)
535 continue
 endif

 if (mcflag .eqv. .true.) then
!c OUTPUT MARKET CATEGORY SUMMARIES
 write(2,*) ' '
 write(2,*) 'LANDINGS BY MARKET CATEGORY'
 do 4500 k=1,nmc

 124

 write(2,*) ' '
 write(2,*) 'MARKET CATEGORY: ',k
 write(2,*) 'YEAR AVG LANDINGS (000 MT) STD'
 do 4530 j=1,ntime
 if (k .eq. 1) then
 write(2,'(1x,i4,4x,f10.3,8x,f10.3)')
(baseyr+j-1),(avgmc1_w(j)/1.0e6),(sdmc1_w(j)/1.0e6)
 else if (k .eq. 2) then
 write(2,'(1x,i4,4x,f10.3,8x,f10.3)')
(baseyr+j-1),(avgmc2_w(j)/1.0e6),(sdmc2_w(j)/1.0e6)
 else if (k .eq. 3) then
 write(2,'(1x,i4,4x,f10.3,8x,f10.3)')
(baseyr+j-1),(avgmc3_w(j)/1.0e6),(sdmc3_w(j)/1.0e6)
 endif
4530 continue
 write(2,*) ' '
 write(2,*) 'MARKET CATEGORY: ',k
 write(2,*) 'YEAR AVG LANDINGS (000 FISH) STD'
 do 4535 j=1,ntime
 if (k .eq. 1) then
 write(2,'(1x,i4,4x,f10.3,8x,d10.3)')
(baseyr+j-1),(avgmc1_n(j)/1.0e3),(sdmc1_n(j)/1.0e3)
 else if (k .eq. 2) then
 write(2,'(1x,i4,4x,f10.3,8x,d10.3)')
(baseyr+j-1),(avgmc2_n(j)/1.0e3),(sdmc2_n(j)/1.0e3)
 else if (k .eq. 3) then
 write(2,'(1x,i4,4x,f10.3,8x,d10.3)')
(baseyr+j-1),(avgmc3_n(j)/1.0e3),(sdmc3_n(j)/1.0e3)
 endif
4535 continue
 write(2,*) ' '
 write(2,*) 'PERCENTILES OF LANDINGS (000 MT)'
 write(2,*) 'MARKET CATEGORY: ',k
 write(2,*) 'YEAR 1% 5% 10% 25% 50% 75% 90% 95%
 99%'
 do 4635 j=1,ntime
 if (k .eq. 1) then
 write(2,'(1x,i4,9(1x,f10.3))') (baseyr+j-1),((pctmc1_w(j,kk)/1.0e6),kk=1,maxpct)
 else if (k .eq. 2) then
 write(2,'(1x,i4,9(1x,f10.3))') (baseyr+j-1),((pctmc2_w(j,kk)/1.0e6),kk=1,maxpct)
 else if (k .eq. 3) then
 write(2,'(1x,i4,9(1x,f10.3))') (baseyr+j-1),((pctmc3_w(j,kk)/1.0e6),kk=1,maxpct)
 endif
4635 continue

 125

 write(2,*) ' '
 write(2,*) 'PERCENTILES OF LANDINGS (000 FISH)'
 write(2,*) 'MARKET CATEGORY: ',k
 write(2,*) 'YEAR 1% 5% 10% 25% 50% 75% 90%
95% 99%'
 do 4735 j=1,ntime
 if (k .eq. 1) then
 write(2,'(1x,i4,9(1x,f10.3))') (baseyr+j-1),((pctmc1_n(j,kk)/1.0e3),kk=1,maxpct)
 else if (k .eq. 2) then
 write(2,'(1x,i4,9(1x,f10.3))') (baseyr+j-1),((pctmc2_n(j,kk)/1.0e3),kk=1,maxpct)
 else if (k .eq. 3) then
 write(2,'(1x,i4,9(1x,f10.3))') (baseyr+j-1),((pctmc3_n(j,kk)/1.0e3),kk=1,maxpct)
 endif
4735 continue
4500 continue
 endif

 if (discflag .eqv. .true.) then
 write(2,*) ' '
 write(2,*) 'DISCARDS FOR F-BASED PROJECTIONS'
 write(2,*) 'YEAR AVG DISCARDS (000 MT) STD'
 do 540 j=1,ntime
 write(2,'(1x,i4,1x,f10.3,10x,f10.3)') (baseyr+j-1),(avgdisc(j)/1.0e6),(sddisc(j)/1.0e6)
540 continue
 write(2,*) ' '
 write(2,*) 'PERCENTILES OF DISCARDS (000 MT)'
 write(2,*) 'YEAR 1% 5% 10% 25% 50% 75% 90% 95%
 99%'
 do 545 j=1,ntime
 write(2,'(1x,i4,9(1x,f10.3))') (baseyr+j-1),((pctdisc(j,k)/1.0e6),k=1,maxpct)
545 continue
 endif

 if ((quotaflag .eqv. .true.) .or. (mixflag .eqv. .true.) .or.(ftarflag .eqv. .true.)) then
 write(2,*) ' '
 if (ftarflag .eqv. .false.) then
 write(2,*) 'REALIZED F SERIES FOR QUOTA-BASED PROJECTIONS'
 else
 write(2,*) 'REALIZED F SERIES FOR F-BASED PROJECTIONS'
 write(2,*) 'WITH A TARGET F OF: ',ftarget
 endif
 write(2,*) 'YEAR AVG F STD'
 do 550 j=1,ntime
 write(2,'(1x,i4,4x,f5.3,4x,f5.3)') (baseyr+j-1),avgf(j),sdf(j)

 126

550 continue
 write(2,*) ' '
 write(2,*) 'PERCENTILES OF REALIZED F SERIES'
 write(2,*) 'YEAR 1% 5% 10% 25% 50% 75% 90% 95% 99%'
 do 555 j=1,ntime
 write(2,'(1x,i4,9(1x,f6.3))') (baseyr+j-1),(pctf(j,k),k=1,maxpct)
555 continue
 endif

!c REVISED FEB-2002
 write(2,*) ' '
 if (sfaflag .eqv. .true.) then
 write(2,'(a,f10.3,a)') 'ANNUAL PROBABILITY FULLY-RECRUITED F EXCEEDS
THRESHOLD:',Fthresh
 write(2,*) 'YEAR Pr(F > Threshold Value) FOR FEASIBLE SIMULATIONS'
 do 62999 j=1,ntime
 write(2,'(1x,i4,12x,f5.3)') (baseyr+j-1),p_Fthresh(j)
62999 continue
 write(2,*) ' '
!c REVISED JUL-2002

if (allfeasible .eqv. .false.) then
 write(2,'(a,f10.3,a)') 'JOINT PROBABILITY FULLY-RECRUITED F EXCEEDS
THRESHOLD:',Fthresh
 write(2,*) 'YEAR Pr(F > Threshold Value)*Pr(Feasible)+(1.0-Pr(Feasible))'
 do 62997 j=1,ntime
 write(2,'(1x,i4,12x,f5.3)') (baseyr+j-1),pjoint_Fthresh(j)
62997 continue
 write(2,*) ' '

endif
 endif

 close(2)

 print *,' '
 print *,'Projection analysis has been completed.'

99999 continue

 end
!c END OF MAIN PROGRAM

!ccc
!c FUNCTION AND SUBROUTINE DECLARATIONS
!ccc

 127

 subroutine warmup(reps)
 integer*4 reps,idum
 real*8 ran2

 idum = -1
 do 10 i=1,reps
 z = ran2(idum)
10 continue
 return
 end
!ccc
 subroutine calc_catch(n,nage,maxage,f,pr,m,catch)
 integer*4 nage,maxage
 real*8 n(1:maxage),f,pr(1:maxage),m,catch(1:maxage)
 real*8 fage

!!c APPLY THE CATCH EQUATION TO EACH AGE
 do 10 j=1,nage
 fage=f*pr(j)
 catch(j)=fage*n(j)*(1.-exp(-m-fage))/(m+fage)
10 continue
 return
 end
!ccc
 subroutine funcd(f,g_f,dg_f)
 use global_arrays
 real*8 sum,tmp1,tmp2,landings
 real*8 f,g_f,dg_f

!!c COMPUTE FUNCTION VALUE (g_f) AND DERIVATIVE (dg_f) OF THE
!!c FUNCTION g(f)=landings(f)-quota FOR A GIVEN VALUE OF f
!!c COMPUTE CATCH AT AGE VECTOR GIVEN f
 call calc_catch(n,nage,maxage,f,pr,m,catch)
!!c INITIALIZE landings AND sum
 landings=0.
 sum=0.

 if (discflag .eqv. .true.) then
!!c COMPUTE LANDINGS BASED ON CATCH WITH DISCARDS
 do 10 j=1,nage
 landings=landings+catch(j)*(1.-discfrac(j))*wtland(j)
10 continue
!!c COMPUTE DERIVATIVE dg_f AS sum WITH DISCARDS
 do 15 j=1,nage

 128

 tmp1=exp(-m-pr(j)*f)

tmp2=(1-discfrac(j))*wtland(j)*pr(j)*n(j)*(m+tmp1*(m*pr(j)*f-m+(pr(j)*f)**2.0))/(m+pr(j)*f)
**2.0
 sum=sum+tmp2
15 continue
 else
!!c COMPUTE LANDINGS BASED ON CATCH WITH NO DISCARDS
 do 20 j=1,nage
 landings=landings+catch(j)*wtland(j)
20 continue
!!c COMPUTE DERIVATIVE dg_f AS sum WITH NO DISCARDS
 do 25 j=1,nage
 tmp1=exp(-m-pr(j)*f)
 tmp2=wtland(j)*pr(j)*n(j)*(m+tmp1*(m*pr(j)*f-m+(pr(j)*f)**2.0))/(m+pr(j)*f)**2.0
 sum=sum+tmp2
25 continue
 endif
!!c COMPUTE g_f
 g_f=landings-quota
!!c COMPUTE dg_f
 dg_f=sum

 return
 end
!ccc
 real function calc_ssb(n,nage,maxage,pr,m,f,zproj,fm,wt)
 integer*4 nage,maxage
 real*8 n(1:maxage),pr(1:maxage),m,f,zproj,fm(1:maxage)
 real*8 wt(1:maxage),sum,fage

 sum=0.0
 do 10 j=1,nage
 fage=pr(j)*f
 sum=sum+exp(-zproj*(m+fage))*fm(j)*wt(j)*n(j)
10 continue
 calc_ssb=sum
 return
 end
!ccc
!c REVISED 7/1/99
 real function calc_meanB(n,lowerage,upperage,maxage,pr,m,f,wtland)
 integer*4 lowerage,upperage,maxage
 real*8 n(1:maxage),pr(1:maxage),m,f

 129

 real*8 wtland(1:maxage),sum,fage

 sum=0.0
 do 10 j=lowerage,upperage
 fage=pr(j)*f
 sum=sum+wtland(j)*n(j)*(1.0-exp(-m-fage))/(m+fage)
10 continue
 calc_meanB=sum
 return
 end
!ccc
!c REVISED FEB-2002
 real function calc_totB(n,maxage,wt)
 integer*4 maxage
 real*8 n(1:maxage)
 real*8 wt(1:maxage),sum

 sum=0.0
 do 10 j=1,maxage
 sum=sum+wt(j)*n(j)
10 continue
 calc_totB=sum
 return
 end
!ccc
!c REVISED 7/8/99
 real function calc_FmeanB(n,lowerage,upperage,maxage,pr,m,f,wtland)
 integer*4 lowerage,upperage,maxage
 real*8 n(1:maxage),pr(1:maxage),m,f
 real*8 wtland(1:maxage),tmp,sum1,sum2,fage

 sum1=0.0
 sum2=0.0
 do 10 j=lowerage,upperage
 fage=pr(j)*f
 tmp=wtland(j)*n(j)*(1.0-exp(-m-fage))/(m+fage)
 sum1=sum1+fage*tmp
 sum2=sum2+tmp
10 continue
 calc_FmeanB=sum1/sum2
 return
 end
!ccc
 subroutine calc_next_n(n,nage,pr,m,f,reclevel,next_n)

 130

 parameter (maxage=50)
 integer*4 nage
 real*8 n(1:maxage),pr(1:maxage),m,f,reclevel,next_n(1:maxage)
 real*8 fage(1:maxage)

!!c COMPUTE F-AT-AGE
 do 10 j=1,nage
 fage(j)=f*pr(j)
10 continue

!!c SET RECRUITMENT
 next_n(1)=reclevel

!!c SET next_n FOR AGES 2 TO nage-1
 do 20 j=2,(nage-1)
 next_n(j)=n(j-1)*exp(-m-fage(j-1))
20 continue

!!c SET next_n FOR THE PLUS-GROUP
 next_n(nage)=n(nage)*exp(-m-fage(nage))+n(nage-1)*exp(-m-fage(nage-1))
 return
 end
!ccc
 subroutine simavg(simdat,nboot,nsim,ntime,quotaflag,mixflag,nfeasible,avgdat)
 use global_arrays
 integer*4 nboot,nsim,ntime,nfeasible
 logical quotaflag,mixflag
 real*8 simdat(1:maxboot,1:maxsim,1:maxtime),avgdat(1:maxtime)
 logical dum

!!c SUM SIMULATION DATA
 if ((quotaflag .eqv. .true.) .or. (mixflag .eqv. .true.)) then
 do 30 j=1,ntime
 avgdat(j)=0.0
 do 20 jj=1,nboot
 do 10 jjj=1,nsim

 dum=feasible(jj,jjj)
 if (dum .eqv. .true.) then

 avgdat(j)=avgdat(j)+simdat(jj,jjj,j)
 endif
10 continue
20 continue
30 continue
 else

 131

 do 40 j=1,ntime
 avgdat(j)=0.0
 do 50 jj=1,nboot
 do 60 jjj=1,nsim
 avgdat(j)=avgdat(j)+simdat(jj,jjj,j)
60 continue
50 continue
40 continue
 endif

!c COMPUTE AVERAGES
 do 100 j=1,ntime
 avgdat(j)=avgdat(j)/nfeasible
100 continue
 return
 end
!ccc
 subroutine simsd(simdat,avgdat,nboot,nsim,ntime,quotaflag,mixflag,nfeasible,sddat)
 use global_arrays
 integer*4 nboot,nsim,ntime,nfeasible
 logical quotaflag,mixflag
 real*8 simdat(1:maxboot,1:maxsim,1:maxtime),avgdat(1:maxtime)
 real*8 sddat(1:maxtime)
 logical dum

 if ((quotaflag .eqv. .true.) .or. (mixflag .eqv. .true.)) then
 do 10 j=1,ntime
 sddat(j)=0.
 do 20 jj=1,nboot
 do 30 jjj=1,nsim

 dum=feasible(jj,jjj)
 if (dum .eqv. .true.) then
 sddat(j)=sddat(j)+(simdat(jj,jjj,j)-avgdat(j))**2.
 endif
30 continue
20 continue
10 continue
 else
 do 40 j=1,ntime
 sddat(j)=0.
 do 50 jj=1,nboot
 do 60 jjj=1,nsim
 sddat(j)=sddat(j)+(simdat(jj,jjj,j)-avgdat(j))**2.
60 continue

 132

50 continue
40 continue
 endif

!c COMPUTE SAMPLE STANDARD DEVIATION
 do 100 j=1,ntime
 sddat(j)=sddat(j)/(nfeasible-1.)
 sddat(j)=sddat(j)**0.5
100 continue

 return
 end
!ccc
 SUBROUTINE hpsort(n,ra)
 integer*4 n
 REAL*8 ra(n)
 integer*4 i,ir,j,l
 REAL*8 rra

 if (n.lt.2) return
 l=n/2+1
 ir=n
10 continue
 if(l.gt.1)then
 l=l-1
 rra=ra(l)
 else
 rra=ra(ir)
 ra(ir)=ra(1)
 ir=ir-1
 if(ir.eq.1)then
 ra(1)=rra
 return
 endif
 endif
 i=l
 j=l+l
20 if(j.le.ir)then
 if(j.lt.ir)then
 if(ra(j).lt.ra(j+1))j=j+1
 endif
 if(rra.lt.ra(j))then
 ra(i)=ra(j)
 i=j

 133

 j=j+j
 else
 j=ir+1
 endif
 goto 20
 endif
 ra(i)=rra
 goto 10
 END
!C (C) Copr. 1986-92 Numerical Recipes Software *1."21$:)!+.
!ccc
 subroutine summarize(simdat,avgdat,sddat,pctdat,quotaflag,mixflag)
 use global_arrays
!!c SUMMARIZE THE OUTPUT STATISTICALLLY: MEANS, STD, PERCENTILES

 real*8 simdat(1:maxboot,1:maxsim,1:maxtime), avgdat(1:maxtime)
 real*8 sddat(1:maxtime),sortarray(1:maxlen)
!c REVISED 6/5/02
 real*8 pctdat(1:maxtime,1:maxpct)
 real*8 pctvalue(1:maxpct)
 integer*4 j,jj,time,index,iflag
 integer*4 k,nsim,ntime,nboot,pctptr
 integer*4 nfeasible
 logical quotaflag,mixflag

!c REVISED 6/5/02
 common /params/ nfeasible,iflag,nboot,nsim,ntime
 common /pcxval/ pctvalue

!!c COMPUTE TIME-AVERAGES FOR simdat
 call simavg(simdat,nboot,nsim,ntime,quotaflag,mixflag,nfeasible,avgdat)

!!c COMPUTE STANDARD DEVIATION OF simdat BY TIME PERIOD
 call simsd(simdat,avgdat,nboot,nsim,ntime,quotaflag,mixflag,nfeasible,sddat)

!!c COMPUTE PERCENTILES OF simdat DISTRIBUTION BY TIME PERIOD
 do 750 time=1,ntime
!!c INITIALIZE THE ARRAY
 index=1
 do 755 j=1,maxlen
 sortarray(j)=-1.
755 continue
 do 760 j=1,nboot
 do 770 jj=1,nsim

 134

 if (feasible(j,jj) .eqv..true.) then
 sortarray(index)=simdat(j,jj,time)
 index=index+1
 endif
770 continue
760 continue

!!c SORT THE ARRAY
 call hpsort(maxlen,sortarray)

!!c COMPUTE PERCENTILES (1,5,10,25,50,75,90,95,99)

 do k = 1,maxpct
 pctptr=nint(nfeasible*pctvalue(k))+iflag
 pctdat(time,k)=sortarray(pctptr)
 end do

750 continue
 return
 end
!ccc
 FUNCTION ran2(idum)
 integer*4 idum,IM1,IM2,IMM1,IA1,IA2,IQ1,IQ2,IR1,IR2,NTAB,NDIV
 REAL*8 ran2,AM,EPS,RNMX
 PARAMETER (IM1=2147483563,IM2=2147483399,AM=1./IM1,IMM1=IM1-1)
 Parameter (IA1=40014,IA2=40692,IQ1=53668,IQ2=52774,IR1=12211)
 parameter (IR2=3791,NTAB=32,NDIV=1+IMM1/NTAB,EPS=1.2e-7,RNMX=1.-EPS)
 integer*4 idum2,j,k,iv(NTAB),iy

 SAVE iv,iy,idum2
 DATA idum2/123456789/, iv/NTAB*0/, iy/0/

 if (idum.le.0) then
 idum=max(-idum,1)
 idum2=idum
 do 11 j=NTAB+8,1,-1
 k=idum/IQ1
 idum=IA1*(idum-k*IQ1)-k*IR1
 if (idum.lt.0) idum=idum+IM1
 if (j.le.NTAB) iv(j)=idum
11 continue
 iy=iv(1)
 endif
 k=idum/IQ1

 135

 idum=IA1*(idum-k*IQ1)-k*IR1
 if (idum.lt.0) idum=idum+IM1
 k=idum2/IQ2
 idum2=IA2*(idum2-k*IQ2)-k*IR2
 if (idum2.lt.0) idum2=idum2+IM2
 j=1+iy/NDIV
 iy=iv(j)-idum2
 iv(j)=idum
 if(iy.lt.1)iy=iy+IMM1
 ran2=min(AM*iy,RNMX)
 return
 END
!C (C) Copr. 1986-92 Numerical Recipes Software *1."21$:)!+.
!ccc
 FUNCTION gasdev(idum)
 integer*4 idum
 REAL*8 gasdev
!CU USES ran2
 integer*4 iset
 REAL*8 fac,gset,rsq,v1,v2,ran2

 SAVE iset,gset
 DATA iset/0/

 if (iset.eq.0) then
1 v1=2.*ran2(idum)-1.
 v2=2.*ran2(idum)-1.
 rsq=v1**2+v2**2
 if(rsq.ge.1..or.rsq.eq.0.)goto 1
 fac=sqrt(-2.*log(rsq)/rsq)
 gset=v1*fac
 gasdev=v2*fac
 iset=1
 else
 gasdev=gset
 iset=0
 endif
 return
 END
!C (C) Copr. 1986-92 Numerical Recipes Software *1."21$:)!+.
!ccc
 FUNCTION rtsafe(x1,x2,xacc)
 integer*4 MAXIT
 REAL*8 rtsafe,x1,x2,xacc

 136

 PARAMETER (MAXIT=100)
 integer*4 j
 REAL*8 df,dx,dxold,f,fh,fl,temp,xh,xl

 call funcd(x1,fl,df)
 call funcd(x2,fh,df)
 if((fl.gt.0..and.fh.gt.0.).or.(fl.lt.0..and.fh.lt.0.))pause 'root must be bracketed in rtsafe'
 if(fl.eq.0.)then
 rtsafe=x1
 return
 else if(fh.eq.0.)then
 rtsafe=x2
 return
 else if(fl.lt.0.)then
 xl=x1
 xh=x2
 else
 xh=x1
 xl=x2
 endif
 rtsafe=.5*(x1+x2)
 dxold=abs(x2-x1)
 dx=dxold
 call funcd(rtsafe,f,df)
 do 11 j=1,MAXIT
 if(((rtsafe-xh)*df-f)*((rtsafe-xl)*df-f).ge.0..or. abs(2.*f).gt.abs(dxold*df)) then
 dxold=dx
 dx=0.5*(xh-xl)
 rtsafe=xl+dx
 if(xl.eq.rtsafe)return
 else
 dxold=dx
 dx=f/df
 temp=rtsafe
 rtsafe=rtsafe-dx
 if(temp.eq.rtsafe)return
 endif
 if(abs(dx).lt.xacc) return
 call funcd(rtsafe,f,df)
 if(f.lt.0.) then
 xl=rtsafe
 else
 xh=rtsafe
 endif

 137

11 continue
 pause 'rtsafe exceeding maximum iterations'
 return
 END
!C (C) Copr. 1986-92 Numerical Recipes Software *1."21$:)!+.
!ccc
 subroutine allocation
!c REVISED FEB-2002
 use global_arrays

 allocate(feasible(1:maxboot,1:maxsim))
 allocate(boot_n(1:maxboot,1:maxage))
 allocate(boot_f(1:maxboot))
 allocate(simssb(1:maxboot,1:maxsim,1:maxtime))
!c REVISED 7/1/99
 allocate(simmeanB(1:maxboot,1:maxsim,1:maxtime))
 allocate(simtotB(1:maxboot,1:maxsim,1:maxtime))
 allocate(simland(1:maxboot,1:maxsim,1:maxtime))
 allocate(simdisc(1:maxboot,1:maxsim,1:maxtime))
 allocate(simf(1:maxboot,1:maxsim,1:maxtime))
!c REVISED 7/8/99
 allocate(simFmeanB(1:maxboot,1:maxsim,1:maxtime))
 allocate(simrecr(1:maxboot,1:maxsim,1:maxtime))
 allocate(simsvind(1:maxboot,1:maxsim,1:maxtime))
 end
!ccc
 subroutine mcAlloc
 use global_arrays

 allocate(simmc1_w(1:maxboot,1:maxsim,1:maxtime))
 allocate(simmc1_n(1:maxboot,1:maxsim,1:maxtime))
 allocate(simmc2_w(1:maxboot,1:maxsim,1:maxtime))
 allocate(simmc2_n(1:maxboot,1:maxsim,1:maxtime))
 allocate(simmc3_w(1:maxboot,1:maxsim,1:maxtime))
 allocate(simmc3_n(1:maxboot,1:maxsim,1:maxtime))
 end
!ccc
 subroutine OtherAlloc
 use global_arrays
 allocate(mixyr(1:maxtime))
 allocate(var_pr(1:maxtime,1:maxage),maxcatch(1:maxage))
 allocate(var_discfrac(1:maxtime,1:maxage))
 allocate(var_zproj(1:maxtime))
 allocate(fseries(1:maxtime),qseries(1:maxtime))

 138

 allocate(avgssb(1:maxtime),avgland(1:maxtime),avgsvind(1:maxtime))
 allocate(avgdisc(1:maxtime),avgf(1:maxtime),avgrecr(1:maxtime))
!c REVISED 7/1/99
 allocate(avgmeanB(1:maxtime),sdmeanB(1:maxtime))
 allocate(avgtotB(1:maxtime),sdtotB(1:maxtime))
 allocate(sdssb(1:maxtime),sdland(1:maxtime),sdsvind(1:maxtime))
 allocate(sddisc(1:maxtime),sdf(1:maxtime),sdrecr(1:maxtime))
 allocate(pctssb(1:maxtime,1:maxpct),pctdisc(1:maxtime,1:maxpct))
 allocate(pctland(1:maxtime,1:maxpct),pctf(1:maxtime,1:maxpct))
 allocate(pctrecr(1:maxtime,1:maxpct),pctsvind(1:maxtime,1:maxpct))
!c REVISED 7/1/99
 allocate(pctmeanB(1:maxtime,1:maxpct))
 allocate(pcttotB(1:maxtime,1:maxpct))
 allocate(crit_count(1:maxtime),p_index(1:maxtime))
 allocate(ssb_count(1:maxtime),p_ssbthresh(1:maxtime))
!c REVISED 7/8/99
 allocate(meanB_count(1:maxtime),p_meanBthresh(1:maxtime))
 allocate(totB_count(1:maxtime),p_totBthresh(1:maxtime))
 allocate(FmeanB_count(1:maxtime),p_FmeanBthresh(1:maxtime))
 allocate(F_count(1:maxtime),p_Fthresh(1:maxtime))
 allocate(avgFmeanB(1:maxtime),sdFmeanB(1:maxtime),pctFmeanB(1:maxtime,1:maxpct))
!c REVISED JUL-2002
 allocate(pjoint_index(1:maxtime))
 allocate(pjoint_ssbthresh(1:maxtime))
 allocate(pjoint_meanBthresh(1:maxtime))
 allocate(pjoint_totBthresh(1:maxtime))
 allocate(pjoint_FmeanBthresh(1:maxtime))
 allocate(pjoint_Fthresh(1:maxtime))
 allocate(market(1:maxmc,1:maxage))
 allocate(avgmc1_w(1:maxtime))
 allocate(avgmc1_n(1:maxtime))
 allocate(avgmc2_w(1:maxtime))
 allocate(avgmc2_n(1:maxtime))
 allocate(avgmc3_w(1:maxtime))
 allocate(avgmc3_n(1:maxtime))
 allocate(sdmc1_w(1:maxtime))
 allocate(sdmc1_n(1:maxtime))
 allocate(sdmc2_w(1:maxtime))
 allocate(sdmc2_n(1:maxtime))
 allocate(sdmc3_w(1:maxtime))
 allocate(sdmc3_n(1:maxtime))
 allocate(pctmc1_w(1:maxtime,1:maxpct))
 allocate(pctmc1_n(1:maxtime,1:maxpct))
 allocate(pctmc2_w(1:maxtime,1:maxpct))

 139

 allocate(pctmc2_n(1:maxtime,1:maxpct))
 allocate(pctmc3_w(1:maxtime,1:maxpct))
 allocate(pctmc3_n(1:maxtime,1:maxpct))
 allocate(obsrec3(1:maxtime,1:maxobsrec))
 allocate(resid(0:maxtime))
 end
!ccc

